
1

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

(Single Source) Shortest Paths(Single Source) Shortest Paths

Given: weighted graph, Given: weighted graph, GG, and source vertex, , and source vertex,
vv

Compute: shortest path to every other vertex Compute: shortest path to every other vertex
in in GG

•• Path length is sum of edge weights along pathPath length is sum of edge weights along path

•• Shortest path has smallest length among all Shortest path has smallest length among all
possible pathspossible paths

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Dijkstra’sDijkstra’s AlgorithmAlgorithm

Grow a collection of vertices for which Grow a collection of vertices for which
shortest path is knownshortest path is known

•• paths contain only vertices in the setpaths contain only vertices in the set

•• add as new vertex the one with the smallest add as new vertex the one with the smallest
distance to the sourcedistance to the source

•• shortest path to an outside vertex must contain shortest path to an outside vertex must contain
a current shortest path as a prefixa current shortest path as a prefix

Use a greedy algorithmUse a greedy algorithm

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Edge RelaxationEdge Relaxation

Maintain value D[Maintain value D[uu] for each vertex] for each vertex
•• Each starts at infinity, and decreases as we find Each starts at infinity, and decreases as we find

out about a shorter path from out about a shorter path from vv to to u u (D[(D[vv] = 0)] = 0)
Maintain priority queue, Maintain priority queue, QQ, of vertices to be , of vertices to be

relaxedrelaxed
•• use D[use D[uu] as key for each vertex] as key for each vertex
•• remove min vertex from remove min vertex from QQ, and relax its , and relax its

neighborsneighbors
Relaxation for each neighbor of Relaxation for each neighbor of uu::

if D[if D[uu] + w(] + w(uu, , zz) < D[) < D[zz] then] then
D[D[zz] = D[] = D[uu] + w(] + w(uu, , zz))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

DijkstraDijkstra PseudocodePseudocode

ShortestPath(ShortestPath(GG, , vv))
init D array entries to infinityinit D array entries to infinity
D[D[vv]=0]=0
add all vertices to priority queue add all vertices to priority queue QQ
while while QQ not empty donot empty do

uu = = QQ.removeMin.removeMin()()
for each neighbor, for each neighbor, zz, of , of uu in in QQ dodo

if D[if D[uu] + w(] + w(uu,,zz) < D[) < D[zz] then] then
D[D[zz] = D[] = D[uu] + w(] + w(uu,,zz))
Change key of Change key of zz in in QQ to D[to D[zz]]

return D as shortest path lengthsreturn D as shortest path lengths

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

DijkstraDijkstra AnalysisAnalysis

OO((nnloglognn) time to build priority queue) time to build priority queue

OO((nnloglognn) time removing vertices from queue) time removing vertices from queue

OO((mmloglognn) time relaxing edges) time relaxing edges

•• Changing key can be done in Changing key can be done in OO(log(lognn) time) time

Total time: Total time: OO((((nn + + mm)log)lognn))

•• which can be which can be OO((nn22loglognn) for dense graph) for dense graph

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Minimum Spanning TreesMinimum Spanning Trees

Given: connected, undirected, weighted Given: connected, undirected, weighted
graphgraph

Compute: spanning tree with minimum sum Compute: spanning tree with minimum sum
of edge weightsof edge weights

•• Spanning tree contains all Spanning tree contains all nn vertices and subset vertices and subset
of edges (of edges (nn--1)1)

•• minimize minimize ww((TT) =) = ΣΣ((vv,,uu) in T) in T ww((((vv,,uu))))

——if edge weights are not unique, there may if edge weights are not unique, there may
be multiple be multiple MSTsMSTs for a graphfor a graph

2

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Applications of MSTApplications of MST

Think of edge weight as a Think of edge weight as a costcost of some sortof some sort

•• MST minimizes total cost associated with MST minimizes total cost associated with
connecting the vertices by edgesconnecting the vertices by edges

Some applications:Some applications:

•• Telephone, electrical, plumbingTelephone, electrical, plumbing

•• Computer networksComputer networks

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Minimum Bridge PrincipleMinimum Bridge Principle
Consider all vertices partitioned into two Consider all vertices partitioned into two

sets, Vsets, V11 and Vand V22
•• Spanning tree must have at least one edge to Spanning tree must have at least one edge to

“bridge the gap” between the partitions“bridge the gap” between the partitions
Consider all bridge edges (with one vertex in Consider all bridge edges (with one vertex in

VV11 and one in Vand one in V22))
•• The minimum weight bridge, The minimum weight bridge, ee, is part of some , is part of some

minimum spanning treeminimum spanning tree
——For an MST without For an MST without ee, insert , insert ee, and remove , and remove

another bridge from the cycleanother bridge from the cycle
——This creates an MST with the same or This creates an MST with the same or

smaller weight (if smaller, the original was smaller weight (if smaller, the original was
not an MSTnot an MST

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Greedy Algorithms for MSTGreedy Algorithms for MST

Kruskal’sKruskal’s AlgorithmAlgorithm
•• Start with many small clustersStart with many small clusters
•• Add minimum bridges, merging clusters as we goAdd minimum bridges, merging clusters as we go

PrimPrim--JarnikJarnik AlgorithmAlgorithm
•• Start with a root (arbitrary)Start with a root (arbitrary)

——partition into “root cluster” and “other cluster”partition into “root cluster” and “other cluster”
•• Find minimum bridge, and transfer node from Find minimum bridge, and transfer node from

other cluster to root clusterother cluster to root cluster
——proceeds much like proceeds much like Dijkstra’sDijkstra’s shortest paths shortest paths

algorithmalgorithm
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

Kruskal’sKruskal’s AlgorithmAlgorithm

Kruskal(Kruskal(GG))
for each vertex in G dofor each vertex in G do

define cluster C(define cluster C(vv)={)={vv}}
insert edges into priority queue, insert edges into priority queue, QQ
Initialize empty tree graph, Initialize empty tree graph, TT
while while TT.numEdges.numEdges() < () < nn -- 1 do1 do

((uu,,vv) =) = Q.removeMinQ.removeMin()()
if C(if C(uu) != C() != C(vv) then) then

add edge (u,v) to add edge (u,v) to TT
Merge C(Merge C(uu) and C() and C(vv))

return Treturn T

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Analyzing Analyzing Kruskal’sKruskal’s AlgorithmAlgorithm
Building Q (and extracting edges) takes Building Q (and extracting edges) takes

OO((mmloglogmm) ==) == OO((mmloglognn22) ==) == OO((mmloglognn))

Each merge takes linear timeEach merge takes linear time

•• Each vertex is involved in only Each vertex is involved in only loglognn mergesmerges

——always merge the smaller cluster into the always merge the smaller cluster into the
larger onelarger one

——cluster of a vertex always at least doubles in cluster of a vertex always at least doubles in
sizesize

Total time is Total time is OO((((nn + + mm)) loglognn))
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

PrimPrim--JarnikJarnik AlgorithmAlgorithm

PrimJarnik(PrimJarnik(GG))
pick vertex pick vertex vv as rootas root
Initialize tree graph, Initialize tree graph, TT, to contain , to contain vv
Initialize priority queue, Initialize priority queue, QQ, to contain , to contain
incident edges of incident edges of vv

while while T.numEdgesT.numEdges() < () < nn--11 dodo
ee = = Q.removeMinQ.removeMin()()
if only one vertex of if only one vertex of ee is in is in TT dodo
v = vertex of e not in Tv = vertex of e not in T
T.insert(T.insert(vv), T.insert(), T.insert(ee))
Q.insert(all incident edges of Q.insert(all incident edges of vv))

return return TT

3

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

PrimPrim--JarnikJarnik AnalysisAnalysis

Inserting and removing into edge queue takes Inserting and removing into edge queue takes
OO((mmloglogmm) =) = OO((mmloglognn))

