

Dijkstra's Algorithm

Grow a collection of vertices for which shortest path is known

- paths contain only vertices in the set
- add as new vertex the one with the smallest distance to the source
- shortest path to an outside vertex must contain a current shortest path as a prefix

Use a greedy algorithm

Johns Hopkins Department of Computer Science Course 600.226: Data Structures, Professor: Jonathan Cohen

Edge Relaxation

Maintain value D[u] for each vertex

• Each starts at infinity, and decreases as we find out about a shorter path from v to u (D[v] = 0)

Maintain priority queue, Q, of vertices to be relaxed

- use D[u] as key for each vertex
- remove min vertex from *Q*, and relax its neighbors

Relaxation for each neighbor of *u***:**

if D[u] + w(u, z) < D[z] then

 $\mathbf{D}[z] = \mathbf{D}[u] + \mathbf{w}(u, z)$

Johns Hopkins Department of Computer Science Course 600.226: Data Structures, Professor: Jonathan Cohen

• which can be $O(n^2 \log n)$ for dense graph

Johns Hopkins Department of Computer Science Course 600.226: Data Structures, Professor: Jonathan Coher

Minimum Spanning Trees

- Given: connected, undirected, weighted graph
- Compute: spanning tree with minimum sum of edge weights
 - Spanning tree contains all *n* vertices and subset of edges (*n*-1)
 - minimize $w(T) = \sum_{(v,u) \text{ in } T} w((v,u))$
 - —if edge weights are not unique, there may be multiple MSTs for a graph

Johns Hopkins Department of Computer Science Course 600.226: Data Structures, Professor: Jonathan Coher

Greedy Algorithms for MST

Kruskal's Algorithm

- · Start with many small clusters
- Add minimum bridges, merging clusters as we go

Prim-Jarnik Algorithm

- Start with a root (arbitrary)
 - -partition into "root cluster" and "other cluster"
- · Find minimum bridge, and transfer node from other cluster to root cluster
 - -proceeds much like Dijkstra's shortest paths algorithm Johns Hopkins Department of Computer Science Course 600.226: Data Structures, Professor: Jonathan Coher

Kruskal's Algorithm

Kruskal (<i>G</i>)
for each vertex in G do
define cluster C(v)={v}
insert edges into priority queue, Q
Initialize empty tree graph, T
while $T.numEdges() < n - 1$ do
(u, v) = Q.removeMin()
if $C(u) != C(v)$ then
add edge (u, v) to T
Merge $C(u)$ and $C(v)$
return T

Johns Hopkins Department of Computer Science Course 600.226: Data Structures, Professor: Jonathan Coher

return T

Johns Hopkins Department of Computer Science Course 600.226: Data Structures, Professor: Jonathan Coher

Prim-Jarnik Analysis

Inserting and removing into edge queue takes *O*(*m*log*m*) = *O*(*m*log*n*)

> Johns Hopkins Department of Computer Science Course 600.226: Data Structures, Professor: Jonathan Cohen