Graphs

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

What is a Graph?

(in computer science, it’s not a data plot)

General structurefor representing positions
with an arbitrary connectivity structure

* Collection of vertices (nodes) and edges (ar cs)

—FEdgeisapair of vertices- it connectsthe
two vertices, making them adjacent

* Atreeisaspecial typeof graph!

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

What can graphs represent?

City map

Computer network
Transportation system
Electrical wiring

etc.

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

What can we do with graphs?

Find a path from one place to another

Find the shortest path from one place to
another

Find the “ weakest link”

« check amount of redundancy in case of failures

Draw them

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Types of Graphs

Undirected / directed
« Edgesaresymmetric/ one-way
Acyclic
« no path of unique edges startsand ends at
same vertex
Connected
« Thereisa path between each pair of nodes
Forest: acyclic graph
Tree: connected forest (not necessarily
rooted)

‘Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

(undirected) Graph ADT

numVertices(), numEdges(): return # of vertices or edges
vertices(), edges(): returniterator of verticesor edges
degree(v): return # of incident edgeson a vertex
incidentEdges(v): returniterator of incident edgeson vertex
endVertices(e): return two verticesof edgee
opposite(v, €): return endpoint of ethat isnotv
areAdjacent(v, w): return whether an edge connectsvtow
insertEdgef, w, 0): createand return an edge between vand
w storing object o
insertVertex(0): insert and return new vertex storingo
removeVertex(V): remove vertex vand itsadjacent edges
removeEdge(e): remove edgee

‘Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Concrete graph representations

Edge List: simple but inefficient in time

Adjacency List: moderately simple and
efficient

Adjacency Matrix: smple but inefficient in
space

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Edge List

Container (list/vector/dictionary) of vertices
« Each vertex just hasits object

Container (list/vector/dictionary) of edges
« Each edge hasits object

« Edge also hasreferencesto itstwo endpoint
vertices

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Edge list (linked list) efficiency

vertices() : O(n)
edges(): O(m)
endVertices(e): 0(1)

incidentEdges(v): O(m)
areAdjacent(v, w): O(m)
removeEdge(e): 0o(1)

removeVertex(v): O(m)

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Adjacency List

Similar to Edge List

Each vertex also has container of references
toincident edges

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Adjacency list (linked list)
efficiency

vertices() : O(n)
edges(): O(m)
endVertices(e): o(1)

incidentEdges(v): O(deg(v))
areAdjacent(v, w): O(min(deg(v), deg(w))

removeEdge(e): O(deg(u)+deg(v))
e=(uyv)
removeVertex(v): O(deg(v) + Sdeg(u))
ul adj(v)

(note: thelast two areincorrect in the textbook)

‘Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Adjacency Matrix

Extend edge list with v x v array

« each entry holdsnull referenceor referenceto
edge connected vertex i tovertex

‘Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Adjacency Matrix efficiency

vertices() : O(n)
edges(): O(m)
endVertices(e): o(1)

incidentEdges(v): O(n)
areAdjacent(v, w): O(1)
removeEdge(e): 0(1)
removeVertex(v): O(n?)

* perhaps O(n) with amortization

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Traversing Graphs

Traversal visits all nodes and edges of graph
(preferably in linear time)

« Depth-first search
 Breadth-first search

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Depth-first Search (DFS)

Basic approach
« Visit node, then recursively visit children

« Traversea path all theway to dead-end beforetraversing
other paths

First, label all verticesand edgesasunvisited
DFS(G V)
for all edges, e, in GincidentEdges(v) do
if eis unvisited then
w = G opposite(v, e)
if wis unvisited then
| abel e as tree edge
DFS(G W)
el se
| abel as back edge

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Performance of DFS

Each vertex isvisited exactly once
Each edgeis used exactly once

Each edge is considered exactly twice

Run timeis O(n + m)

Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Uses for DFS

All n nodesand m edges are visited

« if graph isnot connected, all nodesand edgesin
connected component arevisited

Useful for:
* Find a spanning tree of agraph
« Find a path between two vertices
« Find all connected components of agraph
« Finding acycle (if any) in agraph

‘Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

Breadth-first search

Basic approach
« Visit anode, then put all itschildren on a queueto bevisited
« Visit nodesin order of queue
—visits“close” nodesfirst, then “farther” nodes
BFS(G s)
mark all vertices and edges unvisited
Initialize queue, Qto contain vertex, s
while not Q isEnpty() do
v = Qdequeue(), mark v visited
for each edge, e of v do
if eis unvisited then
w = G other(v, e)
if wis unvisited then
| abel e as tree edge, Q enqueue(w
el se | abel e as cross edge

‘Johns Hopkins Department of Computer Science
Course 600.226: Data Siructures, Professor: Jonathan Cohen

