
1

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

DictionariesDictionaries

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

What is a Dictionary?What is a Dictionary?

Container classContainer class

•• Stores keyStores key--element pairs (like priority queue)element pairs (like priority queue)

Allows “lookAllows “look--up” (find) operationup” (find) operation

Allows insertion/removal of elementsAllows insertion/removal of elements

May be May be unorderedunordered or or orderedordered

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Dictionary KeysDictionary Keys

Must support equality operatorMust support equality operator

•• For ordered dictionary, also support For ordered dictionary, also support
comparitorcomparitor operatoroperator

——useful for finding neighboring elementsuseful for finding neighboring elements

Sometimes required to be uniqueSometimes required to be unique

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Dictionary ExamplesDictionary Examples

Natural language dictionaryNatural language dictionary
•• word is keyword is key
•• element contains word, definition, element contains word, definition,

pronunciation, etc.pronunciation, etc.
Web pagesWeb pages

•• URL is keyURL is key
•• html or other file is elementhtml or other file is element

Any typical database (e.g. student record)Any typical database (e.g. student record)
•• has one or more search keyshas one or more search keys
•• each key may require own organizational each key may require own organizational

dictionarydictionary

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Unordered Dictionary ADTUnordered Dictionary ADT

findElement(kfindElement(k): Return element with key k): Return element with key k

insertItem(k,einsertItem(k,e): Insert element e with key k): Insert element e with key k

removeElement(kremoveElement(k): Remove element with key k): Remove element with key k

Special Special sentinelsentinel, NO_SUCH_KEY returned when , NO_SUCH_KEY returned when
no element with key is presentno element with key is present

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Log FileLog File

Store keyStore key--element pairs in unsorted sequenceelement pairs in unsorted sequence
Always insert using Always insert using insertLastinsertLast()()

•• OO(1) time(1) time

findElementfindElement() by traversing entire list() by traversing entire list
•• OO((nn) time) time

Good when inserts are common and finds are Good when inserts are common and finds are
rare (e.g. archiving data records)rare (e.g. archiving data records)
•• number of searches = number of searches = OO(1) (1) →→ OO((nn) total time) total time
•• number of searches = number of searches = OO((nn)) →→ OO((nn22) total time) total time

2

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Hash TableHash Table

Provides efficient implementation of Provides efficient implementation of
unordered dictionaryunordered dictionary
•• Insert, remove, and find all Insert, remove, and find all OO(1) expected time(1) expected time

Bucket arrayBucket array
•• Provides storage for elementsProvides storage for elements

Hash functionHash function
•• Maps keys to buckets (ranks)Maps keys to buckets (ranks)

•• For each operation, evaluate hash function to For each operation, evaluate hash function to
find location of itemfind location of item

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Bucket ArrayBucket Array

Each array element holds 1 or more Each array element holds 1 or more
dictionary elementsdictionary elements

CapacityCapacity is number of array elementsis number of array elements
LoadLoad is percent of capacity usedis percent of capacity used

•• NN is capacity of hash tableis capacity of hash table
•• nn is size of dictionaryis size of dictionary
•• nn//NN is load of hash tableis load of hash table

CollisionCollision is mapping of multiple dictionary is mapping of multiple dictionary
elements to the same array elementelements to the same array element

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Simplest Hash TableSimplest Hash Table

Keys are unique integers in range [0, Keys are unique integers in range [0, NN--1]1]

Trivial hash functionTrivial hash function
•• hh((kk) =) = kk

Uses Uses OO((NN) space (can be very large)) space (can be very large)
•• okay if okay if NN = = OO((nn))

•• bad if key can be any 32bad if key can be any 32--bit integerbit integer

——table has 2table has 23232 entries = 4 entries = 4 gigaentriesgigaentries

find(), insert(), and remove() all take find(), insert(), and remove() all take OO(1) time(1) time
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

Hash FunctionHash Function

Maps each key to an array rankMaps each key to an array rank
•• hh((kk): K): K → RR
•• array rank is integer in [0, array rank is integer in [0, NN--1]1]

Decomposed into two partsDecomposed into two parts
•• hash codehash code generationgeneration

——converts key to an integerconverts key to an integer
•• compression mapcompression map

——converts integer hash code to valid rankconverts integer hash code to valid rank
•• hh((kk) =) = cmcm((hchc((kk))))

keys
ranks

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

““Good” hash functionGood” hash function

Want to “spread out” values to avoid collisionsWant to “spread out” values to avoid collisions

Ideally, keys act as random distribution of ranksIdeally, keys act as random distribution of ranks
•• Probability(Probability(hh((kk) =) = ii) = 1/) = 1/NN for all for all ii in [0, in [0, NN--1]1]

•• Expected keys in bucket Expected keys in bucket ii is is nn//NN

——this is this is OO(1) if (1) if nn = = OO((NN))

If no collision, operations are If no collision, operations are OO(1)(1)
•• so so expectedexpected time is time is OO(1) for all operations(1) for all operations

Note: worst case time is still Note: worst case time is still OO((nn))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Generating Hash Codes:Generating Hash Codes:
Java’s Java’s Object.hashCodeObject.hashCode()()

generates integer for any objectgenerates integer for any object

generates same integer for two objects as generates same integer for two objects as
long as equals() method evaluates to truelong as equals() method evaluates to true
•• different instances with same value are not different instances with same value are not

equal according to Object.equals()equal according to Object.equals()

——won’t always give expected hashing won’t always give expected hashing
behaviorbehavior

exact method is implementation dependentexact method is implementation dependent

3

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Generating Hash Codes:Generating Hash Codes:
Cast to IntegerCast to Integer

Works well if key is byte, short, or char typeWorks well if key is byte, short, or char type
•• can use can use Float.floatToIntBitsFloat.floatToIntBits() for floats() for floats

DisadvantagesDisadvantages
•• High order bits ignored for longs/doublesHigh order bits ignored for longs/doubles

——May result in collisionsMay result in collisions
•• Cannot handle more complex keysCannot handle more complex keys

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Generating Hash Codes:Generating Hash Codes:
Summing ComponentsSumming Components

Add up multiple integers to get a single Add up multiple integers to get a single
integerinteger
•• Ignore overflowsIgnore overflows
•• hchc(x(x00, x, x11, x, x22, ..., x, ..., xkk--11) =) = ΣΣ xxii

ExamplesExamples
•• Long or double may be converted to two Long or double may be converted to two intsints

(high order and low order) and summed(high order and low order) and summed
•• Strings may be broken into multiple characters Strings may be broken into multiple characters

and summedand summed
DisadvantageDisadvantage

•• Ordering of integers is ignoredOrdering of integers is ignored
——May result in collisionsMay result in collisions

i=0

k-1

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Generating Hash Codes:Generating Hash Codes:
Polynomial Hash CodesPolynomial Hash Codes

Multiply each component by some constant Multiply each component by some constant
to a powerto a power
•• hchc(x(x00, x, x11, x, x22, ..., x, ..., xkk--11) =) = ΣΣaixxii

= x= x00 + a(x+ a(x11 + a(x+ a(x22 + ...x+ ...xkk--11))...)))...)
•• Makes hash code dependent on order of Makes hash code dependent on order of

componentscomponents

DisadvantagesDisadvantages
•• kk--1 multiplies in hash evaluation1 multiplies in hash evaluation
•• Choice of Choice of aa makes big difference in “goodness” makes big difference in “goodness”

of hash functionof hash function

i=0

k-1

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Generating Hash Codes:Generating Hash Codes:
Cyclic ShiftCyclic Shift

Cyclic Shift Hash CodesCyclic Shift Hash Codes
•• Rotates bits of current code by some number of Rotates bits of current code by some number of

positions before adding each new componentpositions before adding each new component
•• hchc(x(x00, x, x11, x, x22, ..., x, ..., xkk--11) =) =

rotate(xrotate(xkk--1 1 + rotate(x+ rotate(xkk--22 + ...(x+ ...(x11 + rotate(x+ rotate(x00))...))))...))
•• no multiplicationno multiplication

——only addition and bitwise shifts and only addition and bitwise shifts and ORsORs

DisadvantagesDisadvantages
•• Choice of rotation size still makes big Choice of rotation size still makes big

difference in “goodness”difference in “goodness”

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Compression MapsCompression Maps

Division MethodDivision Method
•• h(h(kk) = |) = |kk| mod N| mod N
•• N works best if it is a prime numberN works best if it is a prime number
•• Even then, multiples of N map to same positionEven then, multiples of N map to same position

——hh((iNiN) = 0,) = 0, hh((iNiN+j+j) = j mod) = j mod NN
MAD (multiply, add, and divide) MethodMAD (multiply, add, and divide) Method

•• hh((kk) = |) = |akak++bb| mod | mod NN
——h(h(iNiN) = |) = |aiNaiN + + bb| mod | mod NN = = bb mod mod NN
——h(h(iNiN++jj) = |) = |aiNaiN + + ajaj + + bb| mod | mod NN

= |= |ajaj + + bb| mod N| mod N
•• Not clear that this is much better...Not clear that this is much better...

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Collision Handling: ChainingCollision Handling: Chaining

For each bucket, store a sequence of elements For each bucket, store a sequence of elements
that map to the bucketthat map to the bucket
•• effectively a much smaller, auxiliary dictionaryeffectively a much smaller, auxiliary dictionary

Linearly search sequence to find correct Linearly search sequence to find correct
elementelement

4

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Chaining ExampleChaining Example

NN = 7, = 7, hh((kk) = |) = |k|k| mod mod NN

00 11 22 33 44 55 66

2121
1414

3636 --44 1919
55
2626

Insert 19 36 5 21 Insert 19 36 5 21 --4 26 144 26 14 (load = 1)(load = 1)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Collision Handling:Collision Handling:
Open AddressingOpen Addressing

Store only 1 element per bucketStore only 1 element per bucket
•• No addition space, but requires smaller loadNo addition space, but requires smaller load

If multiple elements map to same bucket, use some If multiple elements map to same bucket, use some
method to find empty bucketmethod to find empty bucket
•• Linear probingLinear probing

——hh’’((kk) = () = (hh((kk) +) + jj) mod) mod NN jj = 0, 1, 2, 3, . . .= 0, 1, 2, 3, . . .
»»Keep adding 1 to rank to find empty bucketKeep adding 1 to rank to find empty bucket

•• Quadratic probingQuadratic probing
——hh’’((kk) = () = (hh((kk) +) + jj2 2) mod) mod NN jj = 0, 1, 2, 3, . . .= 0, 1, 2, 3, . . .

•• Double hashingDouble hashing
——hh’’((kk) = () = (hh((kk) +) + jj**hh’’’’((kk)) mod)) mod NN jj = 0, 1, 2, 3, . . .= 0, 1, 2, 3, . . .

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Linear Probing ExampleLinear Probing Example

NN = 7, = 7, hh((kk) = |) = |k|k| mod mod NN

00 11 22 33 44 55 66

2121 14143636 --44 1919 552626

Insert 19 36 5 21 Insert 19 36 5 21 --4 26 144 26 14 (load = 1)(load = 1)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Other Open Addressing DifficultiesOther Open Addressing Difficulties
SearchingSearching

•• For NO_SUCH_KEY, must search until empty For NO_SUCH_KEY, must search until empty
bucket foundbucket found

RemovingRemoving
•• Cannot just empty the bucketCannot just empty the bucket

——could disconnect colliding keyscould disconnect colliding keys
•• Easiest method is setting with special Easiest method is setting with special

DELETED_KEY DELETED_KEY sentinalsentinal
——insert() can reuse bucketinsert() can reuse bucket
——find() must continue searching beyond find() must continue searching beyond

bucketbucket

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

RehashingRehashing

When load of hash table gets too largeWhen load of hash table gets too large

•• Allocate new hash tableAllocate new hash table

•• Generate new hash functionGenerate new hash function

•• ReRe--hash old elements into new tablehash old elements into new table

•• Time cost may be amortized as in dynamic Time cost may be amortized as in dynamic
arrayarray

——must increase size by must increase size by OO((nn) each time) each time

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Ordered Dictionary ADTOrdered Dictionary ADT

Unordered Dictionary ADT Unordered Dictionary ADT plusplus::
•• closestKeyBefore(closestKeyBefore(kk): returns key preceding k): returns key preceding k

•• closestElemBefore(closestElemBefore(kk): returns element preceding k): returns element preceding k

•• closestKeyAfter(closestKeyAfter(kk): returns key following k): returns key following k

•• closestElemAfter(closestElemAfter(kk): returns element following): returns element following

5

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Ordered DictionariesOrdered Dictionaries

Simplest type is “lookup table”Simplest type is “lookup table”

•• Store elements in sorted vectorStore elements in sorted vector

•• Insert takes O(n)Insert takes O(n)

•• Find takes Find takes O(lognO(logn))

——use use binary searchbinary search

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Skip ListsSkip Lists

Based on stacked set of linked lists (a Based on stacked set of linked lists (a
hierarchy of lists)hierarchy of lists)
•• {S{S00, S, S11, ..., , ..., SShh}: }: hh is is heightheight of skip listof skip list
•• SS00 is entire dictionaryis entire dictionary
•• SSii contains a subset of Scontains a subset of Sii--11

——Each element of Each element of SSii is 50% likely to appear is 50% likely to appear
in Sin Sii+1+1

Provides Provides expectedexpected bounds of bounds of OO(log(lognn) for find,) for find,
insert, and removeinsert, and remove
•• with “high probability” with “high probability” -- uses uses randomizationrandomization

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Example Skip ListExample Skip List

Each skip list/row is a Each skip list/row is a levellevel
Each column is a Each column is a towertower

•• links connect elements within level or towerlinks connect elements within level or tower

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Searching (Searching (findElemfindElem))

Begin at left end of highest levelBegin at left end of highest level
1. Scan forward while key 1. Scan forward while key ≤≤ search keysearch key
2. If level > 0, drop down to next level. 2. If level > 0, drop down to next level. GotoGoto 1.1.

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Search ExampleSearch Example

findElement(50)findElement(50)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

InsertionInsertion

1. Find insert position in level 0 using search 1. Find insert position in level 0 using search
and do insertand do insert

2. Flip coin. If heads, insert in level 2. Flip coin. If heads, insert in level ii+1, and +1, and
repeat 2 until tailsrepeat 2 until tails

6

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Insert ExampleInsert Example
insertItem(42, insertItem(42, elemelem))

•• random() returns: H, H, T, . . .random() returns: H, H, T, . . .

4242

4242

4242

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

RemovalRemoval

1. Find element in level 0 using search1. Find element in level 0 using search
2. Remove from level 0 and follow tower to 2. Remove from level 0 and follow tower to

remove from all levelsremove from all levels

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Remove ExampleRemove Example

removeElement(25)removeElement(25)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Basic Analysis Basic Analysis -- height (drop down)height (drop down)

Probability that given item appears in level Probability that given item appears in level ii
1/21/2ii : 1/2 * 1/2 * ... * 1/2: 1/2 * 1/2 * ... * 1/2

Probability that level Probability that level ii has at least 1 elementhas at least 1 element
PPii ≤≤ nn * 1/2* 1/2ii = n= n/2/2ii

PPloglognn ≤≤ nn/2/2loglognn = 1= 1

PP3log3lognn ≤≤ nn/2/23log3lognn = = nn/2/2loglognn33 = = nn//nn33 = 1/= 1/nn22

So height is < 3logSo height is < 3lognn with high probabilitywith high probability
•• Expected height is Expected height is OO(log(lognn))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Basic Analysis Basic Analysis -- scan forwardscan forward

Imagine scan in reverse directionImagine scan in reverse direction

Each element scanned has 1/2 chance of Each element scanned has 1/2 chance of
having an element in tower above ithaving an element in tower above it

ExpectedExpected number of elements scanned before number of elements scanned before
going up tower is 2 = going up tower is 2 = OO(1)(1)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Search AnalysisSearch Analysis

Number of drop down steps is Number of drop down steps is OO(log(lognn))

Number of scan forward steps is Number of scan forward steps is OO(log(lognn))

Total expected search time is Total expected search time is OO(log(lognn))

Same applies to insert and removeSame applies to insert and remove

Worst case?Worst case? O(h + n)O(h + n)

7

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

In Class ExampleIn Class Example

Work in groups of 2Work in groups of 2--33

Assume calls to random() return:Assume calls to random() return:
H T T H H T T H . . .H T T H H T T H . . .

Create skip list with these inserts:Create skip list with these inserts:
10 15 12 5 20 17 2510 15 12 5 20 17 25

What is maximum height for any sequence of What is maximum height for any sequence of
inserts? Why?inserts? Why?

What is expected search time for this random() What is expected search time for this random()
distribution? Why?distribution? Why?

