

Dictionary Keys

Must support equality operator

- For ordered dictionary, also support comparitor operator
—useful for finding neighboring elements
Sometimes required to be unique

Unordered Dictionary ADT

findElement(k): Return element with key k
insertItem(k,e): Insert element \mathbf{e} with key k removeElement(k): Remove element with key k

Special sentinel, NO_SUCH_KEY returned when no element with key is present

Log File

Store key-element pairs in unsorted sequence
Always insert using insertLast()

- O(1) time
findElement() by traversing entire list

$$
\text { - } O(n) \text { time }
$$

Good when inserts are common and finds are rare (e.g. archiving data records)

- number of searches $=O(1) \rightarrow O(n)$ total time
- number of searches $=O(n) \rightarrow O\left(n^{2}\right)$ total time

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen
Natural language dictionary

- word is key
- element contains word, definition, pronunciation, etc.
Web pages
- URL is key
- html or other file is element

Any typical database (e.g. student record)

- has one or more search keys
- each key may require own organizational dictionary

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Hash Table

Provides efficient implementation of unordered dictionary

- Insert, remove, and find all $O(1)$ expected time

Bucket array

- Provides storage for elements

Hash function

- Maps keys to buckets (ranks)
- For each operation, evaluate hash function to find location of item

[^0]
Simplest Hash Table

Keys are unique integers in range $[0, N-1]$
Trivial hash function

- $h(k)=k$

Uses $O(N)$ space (can be very large)

- okay if $N=O(n)$
- bad if key can be any 32-bit integer
-table has 2^{32} entries $=4$ gigaentries
find(), insert(), and remove() all take O (1) time
Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

"Good" hash function

Want to "spread out" values to avoid collisions
Ideally, keys act as random distribution of ranks

- Probability $(h(k)=i)=1 / N$ for all i in $[0, N-1]$
- Expected keys in bucket i is n / N

$$
\text { -this is } O(1) \text { if } n=O(N)
$$

If no collision, operations are $\boldsymbol{O}(1)$

- so expected time is $O(1)$ for all operations

Note: worst case time is still $O(n)$

Bucket Array

Each array element holds 1 or more dictionary elements

Capacity is number of array elements
Load is percent of capacity used

- N is capacity of hash table
- n is size of dictionary
$\cdot n / N$ is load of hash table
Collision is mapping of multiple dictionary elements to the same array element

[^1]
Hash Function

Maps each key to an array rank

- $h(k): \mathbf{K} \rightarrow \mathbf{R}$
- array rank is integer in [0, N-1]

Decomposed into two parts

- hash code generation
-converts key to an integer
- compression map
-converts integer hash code to valid rank
- $\boldsymbol{h}(\boldsymbol{k})=\boldsymbol{c m}(\boldsymbol{h c}(\boldsymbol{k})$)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Generating Hash Codes: Java's Object.hashCode()

generates integer for any object generates same integer for two objects as long as equals() method evaluates to true

- different instances with same value are not equal according to Object.equals()
-won't always give expected hashing behavior
exact method is implementation dependent

Generating Hash Codes: Cast to Integer

Works well if key is byte, short, or char type

- can use Float.floatToIntBits() for floats

Disadvantages

- High order bits ignored for longs/doubles
-May result in collisions
- Cannot handle more complex keys

Generating Hash Codes: Polynomial Hash Codes

Multiply each component by some constant to a power
$\cdot \boldsymbol{h c}\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k-1}\right)=\sum_{i=0}^{k-1} a^{i} \mathbf{x}_{\mathbf{i}}$
$\left.=\mathrm{x}_{0}+\mathrm{a}\left(\mathrm{x}_{1}+\mathrm{a}\left(\mathrm{x}_{2}+\ldots \mathrm{x}_{k-1}\right)\right) \ldots\right)$

- Makes hash code dependent on order of components

Disadvantages

- k-1 multiplies in hash evaluation
- Choice of \boldsymbol{a} makes big difference in "goodness" of hash function

[^2]
Compression Maps

Division Method

- $\mathrm{h}(k)=|k| \bmod \mathrm{N}$
- N works best if it is a prime number
- Even then, multiples of \mathbf{N} map to same position $-h(i N)=0, h(i N+j)=\mathrm{j} \bmod N$
MAD (multiply, add, and divide) Method
- $\boldsymbol{h}(\boldsymbol{k})=|a \boldsymbol{k}+\boldsymbol{b}| \bmod N$
$-\mathrm{h}(i N)=|a i N+b| \bmod N=b \bmod N$
$-\mathrm{h}(i N+j)=|a i N+a j+b| \bmod N$
$=|a j+b| \bmod \mathbf{N}$
- Not clear that this is much better...

Generating Hash Codes: Summing Components

Add up multiple integers to get a single integer

- Ignore overflows
- $\boldsymbol{h c}\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k-1}\right)=\sum_{i=0}^{k-1} \mathbf{x}_{i}$

Examples

- Long or double may be converted to two ints (high order and low order) and summed
- Strings may be broken into multiple characters and summed
Disadvantage
- Ordering of integers is ignored -May result in collisions

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Generating Hash Codes: Cyclic Shift

Cyclic Shift Hash Codes

- Rotates bits of current code by some number of positions before adding each new component
- $h c\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k-1}\right)=$ $\operatorname{rotate}\left(\mathbf{x}_{k-1}+\operatorname{rotate}\left(\mathbf{x}_{k-2}+\ldots\left(\mathrm{x}_{1}+\operatorname{rotate}\left(\mathrm{x}_{0}\right)\right) \ldots\right)\right)$
- no multiplication -only addition and bitwise shifts and ORs

Disadvantages

- Choice of rotation size still makes big difference in "goodness"

Collision Handling: Chaining

For each bucket, store a sequence of elements that map to the bucket

- effectively a much smaller, auxiliary dictionary

Linearly search sequence to find correct element

Chaining Example

$$
N=7, \quad h(k)=|k| \bmod N
$$

Insert $19 \begin{array}{llllll}36 & 5 & 21 & -4 & 26 & 14\end{array}$
$(\operatorname{load}=1)$

Johns Hopkins Department of Computer Science Course 600.226: Data Structures, Professor: Jonathan Cohen

Collision Handling: Open Addressing

Store only 1 element per bucket

- No addition space, but requires smaller load

If multiple elements map to same bucket, use some
method to find empty bucket

- Linear probing
$-h^{\prime}(k)=(h(k)+j) \bmod N j=0,1,2,3, \ldots$
»Keep adding 1 to rank to find empty bucket
- Quadratic probing
$-h^{\prime}(k)=\left(h(k)+j^{2}\right) \bmod N j=0,1,2,3, \ldots$
- Double hashing

$$
-\boldsymbol{h}^{\prime}(\boldsymbol{k})=\left(\boldsymbol{h}(\boldsymbol{k})+\boldsymbol{j}^{*} \boldsymbol{h}^{\prime \prime}(\boldsymbol{k})\right) \bmod N \boldsymbol{j}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots
$$

Other Open Addressing Difficulties

Searching

- For NO_SUCH_KEY, must search until empty bucket found
Removing
- Cannot just empty the bucket -could disconnect colliding keys
- Easiest method is setting with special DELETED_KEY sentinal
-insert() can reuse bucket
-find() must continue searching beyond bucket

Course 600.226: Data Structures, Professor: Jonathan Cohen

Ordered Dictionary ADT

Unordered Dictionary ADT plus:

- closestKeyBefore (k) : returns key preceding k
- closestElemBefore (k) : returns element preceding k
- closestKeyAfter(k): returns key following k
- closestElemAfter(k): returns element following array
—must increase size by $O(n)$ each time
When load of hash table gets too large
- Allocate new hash table
- Generate new hash function
- Re-hash old elements into new table
- Time cost may be amortized as in dynamic

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Ordered Dictionaries

Simplest type is "lookup table"

- Store elements in sorted vector
- Insert takes O(n)
- Find takes O(logn)
-use binary search

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Example Skip List

Each skip list/row is a level

Each column is a tower

- links connect elements within level or tower

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Search Example

findElement(50)

Insertion
 n

1. Find insert position in level 0 using search and do insert
2. Flip coin. If heads, insert in level $i+1$, and repeat 2 until tails

Searching (findElem)

Begin at left end of highest level

1. Scan forward while key \leq search key
2. If level >0, drop down to next level. Goto 1 .

Based on stacked set of linked lists (a hierarchy of lists)

- $\left\{\mathrm{S}_{0}, \mathrm{~S}_{1}, \ldots, \mathrm{~S}_{h}\right\}$: h is height of skip list
- S_{0} is entire dictionary
- S_{i} contains a subset of S_{i-1}
-Each element of S_{i} is $\mathbf{5 0 \%}$ likely to appear in S_{i+1}
Provides expected bounds of $O(\log n)$ for find, insert, and remove
- with "high probability" - uses randomization

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen
处

Removal

1. Find element in level 0 using search
2. Remove from level 0 and follow tower to remove from all levels

Remove Example

removeElement(25)
Basic Analysis - height (drop down)
Probability that given item appears in level i
$1 / 2^{\mathbf{i}}: 1 / 2 * 1 / 2$ * ... * $1 / 2$
Probability that level i has at least 1 element
$P_{i} \leq n * 1 / 2^{i}=n / 2^{i}$
$\mathbf{P}_{\log n} \leq n / 2^{\log n}=1$
$\mathbf{P}_{3 \log n} \leq n / 2^{3 \log n}=n / 2^{\log n^{3}}=n / n^{3}=1 / n^{2}$
So height is < 3logn with high probability

- Expected height is $O(\log n)$

[^3]
Basic Analysis - scan forward

Imagine scan in reverse direction
Each element scanned has $\mathbf{1 / 2}$ chance of having an element in tower above it

Expected number of elements scanned before going up tower is $2=O(1)$

Search Analysis

Number of drop down steps is $O(\log n)$
Number of scan forward steps is $\boldsymbol{O}(\log n)$
Total expected search time is $O(\log n)$
Same applies to insert and remove

Worst case? $\quad \mathbf{O}(\mathrm{h}+\mathrm{n})$

In Class Example

Work in groups of 2-3
Assume calls to random() return:
HTTH HTTH ...
Create skip list with these inserts:
$\begin{array}{lllllll}10 & 15 & 12 & 5 & 20 & 17 & 25\end{array}$
What is maximum height for any sequence of inserts? Why?

What is expected search time for this random() distribution? Why?

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohe

[^0]: Jourse 600.226: Data Structures, Professor: Jonathan Cohen

[^1]: Course 600.226: Data Structures, Professor: Jonathan Cohen

[^2]: Johns Hopkins Department of Computer Science
 Course 600.226: Data Structures, Professor: Jonathan Cohe

[^3]: Course 600.226: Data Structures, Professor: Jonathan Cohen

