Dictionaries

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

What is a Dictionary?

Container class

* Stores key-element pairs (like priority queue)
Allows “look-up” (find) operation
Allows insertion/removal of elements

May be unordered or ordered

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Dictionary Keys

Must support equality operator

* For ordered dictionary, also support
comparitor operator

—useful for finding neighboring elements

Sometimes required to be unique

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Dictionary Examples

Natural language dictionary
* word is key

* element contains word, definition,
pronunciation, etc.

Web pages
* URL is key
* html or other file is element

Any typical database (e.g. student record)
* has one or more search keys

* each key may require own organizational
dictionary

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Unordered Dictionary ADT

findElement(k): Return element with key k
insertItem(k,e): Insert element e with key k

removeElement(k): Remove element with key k

Special sentinel, NO_SUCH_KEY returned when
no element with key is present

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Log File

Store key-element pairs in unsorted sequence

Always insert using insertLast()
* O(1) time

findElement() by traversing entire list
* O(n) time

Good when inserts are common and finds are
rare (e.g. archiving data records)

* number of searches = O(1) - O(n) total time

* number of searches = O(n) = O(n?) total time

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Hash Table

Provides efficient implementation of
unordered dictionary

* Insert, remove, and find all O(1) expected time
Bucket array

* Provides storage for elements
Hash function

* Maps keys to buckets (ranks)

* For each operation, evaluate hash function to
find location of item

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Bucket Array

Each array element holds 1 or more
dictionary elements

Capacity is number of array elements
Load is percent of capacity used
* N is capacity of hash table

* n is size of dictionary
* n/N is load of hash table

Collision is mapping of multiple dictionary
elements to the same array element

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Simplest Hash Table

Keys are unique integers in range [0, N-1]
Trivial hash function
.« h(k)=k
Uses O(NV) space (can be very large)
« okay if N=0(n)
* bad if key can be any 32-bit integer
—table has 232 entries = 4 gigaentries

find(), insert(), and remove() all take O(1) time

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Hash Function

ranks

- [OIIT1T1T1T1T

Maps each key to an array rank
ch(k): K> R
« array rank is integer in [0, N-1]
Decomposed into two parts
* hash code generation
—converts key to an integer
* compression map
—converts integer hash code to valid rank
* h(k)=cm(hc(k))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

“Good” hash function

Want to “spread out” values to avoid collisions
Ideally, keys act as random distribution of ranks
« Probability(h(k)=i) = 1/N for all i in [0, N-1]

* Expected keys in bucket i is n/N
—this is O(1) if n = O(N)
If no collision, operations are O(1)

* 50 expected time is O(1) for all operations

Note: worst case time is still O(n) |

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Generating Hash Codes:
Java’s Object.hashCode()

generates integer for any object

generates same integer for two objects as
long as equals() method evaluates to true

« different instances with same value are not
equal according to Object.equals()

—won’t always give expected hashing
behavior

exact method is implementation dependent

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Generating Hash Codes:
Cast to Integer

Works well if key is byte, short, or char type
« can use Float.floatToIntBits() for floats
Disadvantages
* High order bits ignored for longs/doubles
—NMay result in collisions
* Cannot handle more complex keys

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Generating Hash Codes:
Summing Components

Add up multiple integers to get a single

integer
* Ignore overflows Kl
* he(Xg, Xq5 Xp5 ooy X 1) =X X;
Examples w0

* Long or double may be converted to two ints
(high order and low order) and summed
* Strings may be broken into multiple characters
and summed
Disadvantage
* Ordering of integers is ignored
—May result in collisions

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Generating Hash Codes:
Polynomial Hash Codes

Multiply each component by some constant
to a power .

* he(Xgs Xqp Xgy eeey Xpq) =_§(l)aixi
=X, T a(x; + a(x; +..X;.)-..)

* Makes hash code dependent on order of
components

Disadvantages
* k-1 multiplies in hash evaluation

* Choice of @ makes big difference in “goodness”
of hash function

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Generating Hash Codes:
Cyclic Shift

Cyclic Shift Hash Codes

* Rotates bits of current code by some number of
positions before adding each new component

* he(Xg Xg5 Xy eey Xpq) =
rotate(x,_; + rotate(x, , + ...(x; + rotate(xy))...))

* no multiplication
—only addition and bitwise shifts and ORs
Disadvantages

* Choice of rotation size still makes big
difference in “goodness”

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Compression Maps

Division Method

* h(k) = |k| mod N

* N works best if it is a prime number

* Even then, multiples of N map to same position
—h(iN) =0, h(IN+j) =j mod N

MAD (multiply, add, and divide) Method

* h(k) = |ak+b| mod N

—h(iN) = |aiN + b| mod N = b mod N

—h(N+)) = |aiN +§1j + bl mod N
= |aj + b| mod
* Not clear that this is much better...

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Collision Handling: Chaining

For each bucket, store a sequence of elements
that map to the bucket

« effectively a much smaller, auxiliary dictionary

Linearly search sequence to find correct
element

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Chaining Example

N=17, h(k)=|k| mod N
Insert 19 36 5 21 -4 26 14 (load =1)

01 2 3 4 5 6

RELE

2]
LT
R»[e] T

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Collision Handling:
Open Addressing

Store only 1 element per bucket
* No addition space, but requires smaller load
If multiple elements map to same bucket, use some
method to find empty bucket
* Linear probing
—h'(k)=(h(k)+j)mod N j=0,1,2,3,...
»Keep adding 1 to rank to find empty bucket
* Quadratic probing
—h'(k)=(h(k)+j2)mod N j=0,1,2,3,...
* Double hashing
—h'(k)=(h(k)+j*h’'"(k))mod N j=0,1,2,3,...

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Linear Probing Example

N=7, h(k)=|k| mod N
Insert 19 36 5 21 -4 26 14 (load =1)

01 2 3 4 5 6

[21]36]26 [14] -4]19] 5 |

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Other Open Addressing Difficulties

Searching

* For NO_SUCH_KEY, must search until empty
bucket found

Removing
» Cannot just empty the bucket
—could disconnect colliding keys

+ Easiest method is setting with special
DELETED_KEY sentinal

—insert() can reuse bucket

—find() must continue searching beyond
bucket

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Rehashing

When load of hash table gets too large
* Allocate new hash table
* Generate new hash function
* Re-hash old elements into new table

* Time cost may be amortized as in dynamic
array

—must increase size by O(n) each time

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Ordered Dictionary ADT

Unordered Dictionary ADT plus:
« closestKeyBefore(k): returns key preceding k
« closestElemBefore(k): returns element preceding k
« closestKeyAfter(k): returns key following k

* closestElemAfter(k): returns element following

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Ordered Dictionaries

Simplest type is “lookup table”
* Store elements in sorted vector
« Insert takes O(n)
* Find takes O(logn)

—use binary search

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Skip Lists

Based on stacked set of linked lists (a
hierarchy of lists)

* {Sps> Sys «ees Sy}t h is height of skip list
* S, is entire dictionary
* S; contains a subset of S;
—Each element of S; is 50% likely to appear
in S,
Provides expected bounds of O(logn) for find,
insert, and remove

» with “high probability” - uses randomization

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Example Skip List

Each skip list/row is a level
Each column is a rower
* links connect elements within level or tower

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Searching (findElem)

Begin at left end of highest level
1. Scan forward while key < search key
2. If level > 0, drop down to next level. Goto 1.

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Search Example

findElement(50)
s &
s, (C= 17
5 [C= 17 35 55
5 = 17 25 31 55
S,_ = 12 17 2] K 38 2 55
SU) 12 17 20 % 3l 8 9 4 50 55

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Insertion

1. Find insert position in level 0 using search
and do insert

2. Flip coin. If heads, insert in level i+1, and
repeat 2 until tails

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Insert Example

insertltem(42, elem)

e random() returns: H, H, T, ...

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Removal

1. Find element in level 0 using search

2. Remove from level 0 and follow tower to
remove from all levels

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Remove Example

removeElement(25)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Basic Analysis - height (drop down)

Probability that given item appears in level i
1728 : 172 *12 * ... *1/2

Probability that level i has at least 1 element
P,<n*1/2=n/2

P, < n/2len =1

Pijogn < 1/230% = /2027 = pjpd = 1/m?

So height is < 3logn with high probability
» Expected height is O(logn)

logn

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Basic Analysis - scan forward

Imagine scan in reverse direction

Each element scanned has 1/2 chance of
having an element in tower above it

Expected number of elements scanned before
going up tower is 2 = O(1)

Johns Hopkins Department of Computer Science

Search Analysis

Number of drop down steps is O(logn)
Number of scan forward steps is O(logn)
Total expected search time is O(logn)

Same applies to insert and remove

Worst case? O(h +n)

Course 600.226: Data Structures, Professor: Jonathan Cohen

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

In Class Example

Work in groups of 2-3

Assume calls to random() return:
HTTH HTTH

Create skip list with these inserts:
10 15 12 5 20 17 25

What is maximum height for any sequence of
inserts? Why?

What is expected search time for this random()
distribution? Why?

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

