
1

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Analysis ToolsAnalysis Tools

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Characterizing PerformanceCharacterizing Performance

Running timeRunning time

Memory usageMemory usage

Depends partly on hardware platform, Depends partly on hardware platform,
implementation, operating system, etc.implementation, operating system, etc.

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Goals of CharacterizationGoals of Characterization

Predict performance on any inputPredict performance on any input

Compare relative performance of Compare relative performance of
algorithms/data structuresalgorithms/data structures

Do it without having to implement firstDo it without having to implement first

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Experimental AnalysisExperimental Analysis

Implement data structure and algorithmImplement data structure and algorithm

Run on many inputs of different sizes and Run on many inputs of different sizes and
other characteristicsother characteristics

•• Record running time, memory usage, etc.Record running time, memory usage, etc.

Perform statistical analysisPerform statistical analysis

•• Plot data, find a best fitting curvePlot data, find a best fitting curve

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Limitations of Experimental Limitations of Experimental
AnalysisAnalysis

Requires implementations of each Requires implementations of each
algorithm/data structure to be comparedalgorithm/data structure to be compared

Fair comparison must be on same Fair comparison must be on same
hardware/software platformhardware/software platform

Difficult to make good predictionsDifficult to make good predictions
•• Test inputs may not fully characterize all Test inputs may not fully characterize all

possible inputspossible inputs
•• Extrapolation of input sizes may not be Extrapolation of input sizes may not be

accurateaccurate
——Difficult to know what input range must be Difficult to know what input range must be

testedtested
Johns Hopkins Department of Computer Science

Course 600.226: Data Structures, Professor: Jonathan Cohen

Asymptotic AnalysisAsymptotic Analysis

Express algorithm as pseudoExpress algorithm as pseudo--codecode

Count maximum number of primitive Count maximum number of primitive
operationsoperations

•• As function of input size, As function of input size, nn

Report analysis results in “BigReport analysis results in “Big--Oh” notationOh” notation

2

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

PseudoPseudo--codecode

Looks like generic highLooks like generic high--level languagelevel language

Designed for human readabilityDesigned for human readability

Express algorithm conciselyExpress algorithm concisely

•• But don’t skip important detailsBut don’t skip important details

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

PseudoPseudo--code Examplecode Example

Algorithm: Algorithm: arrayMaxarrayMax((AA,,nn))
Input: An array Input: An array AA storing n >=1 integersstoring n >=1 integers
Output: Maximum element value in Output: Maximum element value in AA
currentMaxcurrentMax AA[0][0]
for for ii 1 to 1 to nn--1 do1 do

if if currentMaxcurrentMax < < AA[[ii] then] then
currentMaxcurrentMax AA[[ii]]

return return currentMaxcurrentMax

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Primitive OperationsPrimitive Operations

Determine “running time” of pseudoDetermine “running time” of pseudo--code code
algorithmalgorithm

Assume each operation takes same time or Assume each operation takes same time or
some constant multiplesome constant multiple

Just count operationsJust count operations
•• assignmentassignment
•• procedure call, returnprocedure call, return
•• arithmetic operation, comparisonarithmetic operation, comparison
•• indexing array, following referenceindexing array, following reference

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Counting Operations ExampleCounting Operations Example

currentMaxcurrentMax AA[0][0] 2 ops2 ops
for for ii 1 to 1 to nn--1 do1 do 2n2n--2 ops2 ops

ifif currentMaxcurrentMax < < AA[[ii] then n] then n--1 ops1 ops
currentMaxcurrentMax AA[[ii] ~n ops (max)] ~n ops (max)

return return currentMaxcurrentMax 1 op1 op

Total operations: 4n opsTotal operations: 4n ops

Exact constants will not matter for the Exact constants will not matter for the
asymptotic analysisasymptotic analysis

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Asymptotic AnalysisAsymptotic Analysis

Provides bounds on worst (or average) case Provides bounds on worst (or average) case
behavior of algorithmbehavior of algorithm

Emphasizes behavior “in the limit”, as Emphasizes behavior “in the limit”, as nn
grows to be very largegrows to be very large

Constant factors are ignored Constant factors are ignored

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

““BigBig--Oh” NotationOh” Notation

Given two functions, Given two functions, ff((nn) and) and gg((nn),),

ff(n) is (n) is OO((gg((nn)) if there is are constants)) if there is are constants c c > 0 and > 0 and
nn0 0 ≥≥ 1 such that 1 such that ff((nn)) ≤ cgcg((nn) for all) for all n n ≥≥ nn00

•• ““ff((nn) is) is orderorder g(g(nn)”)”

gg((nn) provides upper bound on) provides upper bound on ff((nn))

•• in some sense, in some sense, ff((nn)) ≤ gg((nn))

3

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Analysis of Analysis of maxArraymaxArray

Lets say number of operations was exactly Lets say number of operations was exactly
44nn = = ff((nn))

Choose Choose c=5c=5 and and nn00==1, and try 1, and try gg((nn) =) = nn

ff((nn) is) is OO((nn))

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Proving BigProving Big--Oh by ExampleOh by Example

1. Choose likely value for c1. Choose likely value for c

2. Find intersection of f and cg2. Find intersection of f and cg

•• set equal and find rootsset equal and find roots

3. Choose largest intersection as n3. Choose largest intersection as n00

4. Show that cg > f for a value > n4. Show that cg > f for a value > n00

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Some useful Some useful gg((nn) functions) functions

1 1 loglogn n nn1/21/2 nn nnloglognn nn22 nn22loglogn n nn33 nnkk 22nn

•• in increasing orderin increasing order

constantconstant

logarithmiclogarithmic

linearlinear
quadraticquadratic

cubiccubic

polynomialpolynomial

exponentialexponential

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Other useful notationsOther useful notations

bigbig--OhOh OO ≤≤

•• “upper bound”“upper bound”

littlelittle--ohoh oo <<

littlelittle--omegaomega ωω >>

bigbig--OmegaOmega ΩΩ ≥≥

•• “lower bound”“lower bound”

bigbig--ThetaTheta ΘΘ ==

