Analysis Tools

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Characterizing Performance

Running time

Memory usage

Depends partly on hardware platform,
implementation, operating system, etc.

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Goals of Characterization

Predict performance on any input

Compare relative performance of
algorithms/data structures

Do it without having to implement first

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Experimental Analysis

Implement data structure and algorithm

Run on many inputs of different sizes and
other characteristics

* Record running time, memory usage, etc.
Perform statistical analysis

* Plot data, find a best fitting curve

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Limitations of Experimental
Analysis

Requires implementations of each
algorithm/data structure to be compared
Fair comparison must be on same
hardware/software platform
Difficult to make good predictions
* Test inputs may not fully characterize all
possible inputs
» Extrapolation of input sizes may not be
accurate

—Difficult to know what input range must be
tested

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Asymptotic Analysis

Express algorithm as pseudo-code

Count maximum number of primitive
operations

* As function of input size, n

Report analysis results in “Big-Oh” notation

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen




Pseudo-code

Looks like generic high-level language
Designed for human readability

Express algorithm concisely

* But don’t skip important details

Pseudo-code Example

Algorithm: arrayMax(A4,n)
Input: An array A4 storing n >=1 integers
Output: Maximum element value in A
currentMax<«— A|0]
for i«— 1ton-1do

if currentMax < A[i] then

currentMax <«— A[i]

return currentMax

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Primitive Operations

Determine “running time” of pseudo-code
algorithm
Assume each operation takes same time or
some constant multiple
Just count operations
* assignment
* procedure call, return
« arithmetic operation, comparison
* indexing array, following reference

Counting Operations Example

currentMax «—A[0] 2 ops
for i «— 1to n-1do 2n-2 ops
if currentMax < A[i] then n-1 ops
currentMax «— Ali] ~n ops (max)
return currentMax 1o0p

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Total operations: 4n ops

Exact constants will not matter for the
asymptotic analysis

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Asymptotic Analysis

Provides bounds on worst (or average) case
behavior of algorithm

Emphasizes behavior “in the limit”, as n
grows to be very large

Constant factors are ignored

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

“Big-Oh” Notation

Given two functions, f{(r) and g(n),

f(n) is O(g(n)) if there is are constants ¢ > 0 and
ny> 1 such that f{(n) < cg(n) for all n > n,

* “f(n) is order g(n)”
g(n) provides upper bound on f{n)

* in some sense, f(n) < g(n)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen




Analysis of maxArray

Lets say number of operations was exactly

4n = f(n)
Choose c=5 and n,=1, and try g(n) =n
f(n) is O(n)

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Proving Big-Oh by Example

1. Choose likely value for ¢
2. Find intersection of f and cg
« set equal and find roots
3. Choose largest intersection as n,

4. Show that cg > f for a value > n,

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

Some useful g(n) functions

logarithmic polynomial
constant . quadratic
/ lm{ar cubic |exponential

1 logn n'? n nlogn n* n*logn n3 nk 2"

« in increasing order

Other useful notations

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen

big-Oh 0 <
* “upper bound”
little-oh 0 <

little-omega o >

v

big-Omega Q
* “lower bound”

big-Theta (0]

Johns Hopkins Department of Computer Science
Course 600.226: Data Structures, Professor: Jonathan Cohen




