Motivation

Social Networks, Internet of Things and Business intelligence applications model data as RDF graphs and query with SPARQL query language.

Heterogeneity: selective and non-selective queries

Problem: inefficient query processing on massive data parallelism and lack of execution isolation leads to 1) sub-optimal response time and 2) workload interference.

Graph Store

- **Predicate-based grouping:** partition the key space into multiple segments, which are identified by the combination of predicate and direction (e.g., p(id.d)).
- **Caching RDF store:** splits each segment into multiple fixed-size blocks and allows to store them into discontinuous regions of the cache on GPU.
- **Replacement policy:** uses a look-ahead LRU-based policy to decide where to store the new prefetched value and key blocks.

Distributed Processing

- **Parallel sub-query generation:** leverages GPU to fast break history tables
- **Direct sub-query distribution:** adopts GPUDirect RDMA to avoid unnecessary data copy

Computation Model

Basic approach:
- Leverage GPUs to exploit data parallelism in non-selective queries

Query Execution

How we improve memory and time efficiency step by step:
- **all graph scale:** potential GPU memory overflow
- **per-query scale:** only cache the necessary data retained in GPU memory before running a query.
- **per-pattern scale:** only prefetches the triples with a certain predicate used by the next triple pattern.
- **Pipeline:** overlap the data movement and query execution time
- **per-piece scale:** further split predicates into multiple fixed-size blocks and cached them in a best-effort way.

Case Study

Background

We use Lehigh University Benchmark (LUBM) which includes both selective queries and non-selective queries. We compare our system with the state-of-art systems Wukong and TriAD.

Settings

- **Hardware Settings**
 - 5-node cluster, 12 cores each
 - 56Gbps InfiniBand NIC

Benchmark Settings

- Single query latencies
- Mixed concurrent latency CDF

Results

<table>
<thead>
<tr>
<th>Performance (msec) on LUBM-1024D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Time</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Summary

Wukong+G:
1. GPU-based RDF Query Execution
2. GPU-friendly RDF Graph Store
3. GPU & RDMA-accelerated Query Distribution

This work was done while the author was in SJTU.