
Wireless Medium Access

David Holmer dholmer@jhu.edu

Multi-transmitter Interference Problem

- Similar to multi-path or noise
- Two transmitting stations will constructively/destructively interfere with each other at the receiver
- Receiver will "hear" the sum of the two signals (which usually means garbage)

Medium Access Control

- Protocol required to coordinate access
 - I.E. transmitters must take turns

Similar to talking in a crowded room

Also similar to hub based Ethernet

Carrier Sense Multiple Access (CSMA)

Procedure

- Listen to medium and wait until it is free (no one else is talking)
- Wait a random back off time then start talking

Advantages

- Fairly simple to implement
- Functional scheme that works

Disadvantages

 Can not recover from a collision (inefficient waste of medium time)

Carrier Sense Multiple Access with Collision Detection (CSMA-CD)

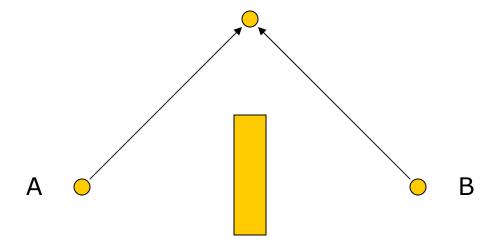
Procedure

- Listen to medium and wait until it is free
- Then start talking, but listen to see if someone else starts talking too
- If a collision occurs, stop and then start talking after a random back off time
- This scheme is used for hub based Ethernet
- Advantages
 - More efficient than basic CSMA
- Disadvantages
 - Requires ability to detect collisions

Collision Detection Problem

- Transmit signal is MUCH stronger than received signal
- Due to high path loss in the wireless environment (up to 100dB)
- Impossible to "listen" while transmitting because you will drown out anything you hear
- Also transmitter may not even have much of a signal to detect due to geometry

Carrier Sense Multiple Access with Collision Avoidance (CSMA-CA)


Procedure

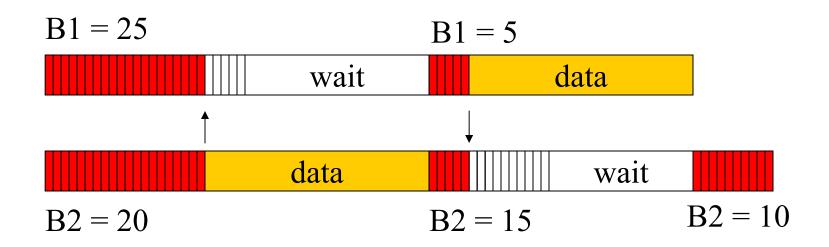
- Similar to CSMA but instead of sending packets control frames are exchanged
- RTS = request to send
- CTS = clear to send
- DATA = actual packet
- ACK = acknowledgement

Carrier Sense Multiple Access with Collision Avoidance (CSMA-CA)

Advantages

- Small control frames lessen the cost of collisions (when data is large)
- RTS + CTS provide "virtual" carrier sense which protects against hidden terminal collisions (where A can't hear B)

Carrier Sense Multiple Access with Collision Avoidance (CSMA-CA)


Disadvantages

- Not as efficient as CSMA-CD
- Doesn't solve all the problems of MAC in wireless networks (more to come)

Random Contention Access

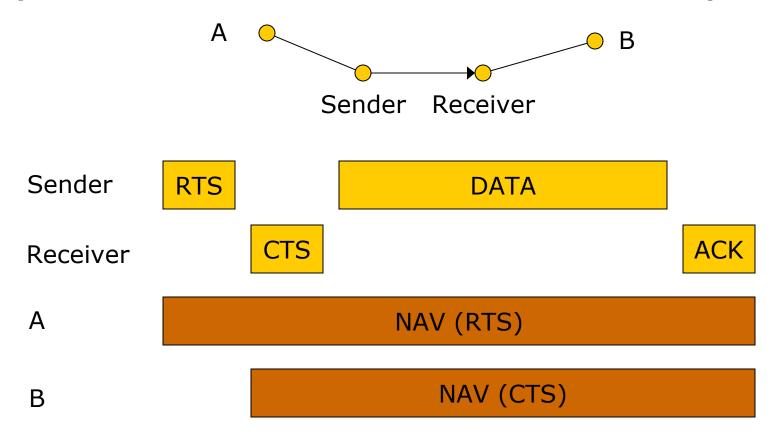
- Slotted contention period
 - Used by all carrier sense variants
 - Provides random access to the channel
- Operation
 - Each node selects a random back off number
 - Waits that number of slots monitoring the channel
 - If channel stays idle and reaches zero then transmit
 - If channel becomes active wait until transmission is over then start counting again

802.11 DCF Example

cw = 31

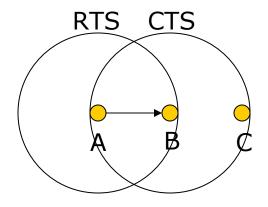
B1 and B2 are backoff intervals at nodes 1 and 2

802.11 Contention Window


- Random number selected from [0,cw]
- Small value for cw
 - Less wasted idle slots time
 - Large number of collisions with multiple senders (two or more stations reach zero at once)
- Optimal cw for known number of contenders & know packet size
 - Computed by minimizing expected time wastage (by both collisions and empty slots)
 - Tricky to implement because number of contenders is difficult to estimate and can be VERY dynamic

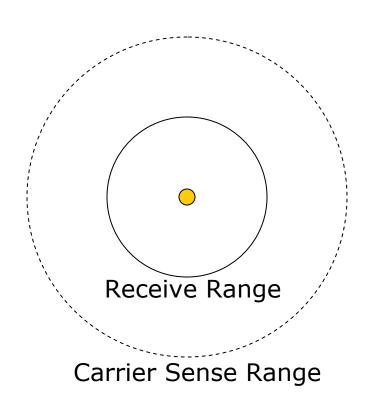
802.11 Adaptive Contention Window

- 802.11 adaptively sets cw
 - Starts with cw = 31
 - If no CTS or ACK then increase to 2*cw+1 (63, 127, 255)
 - Reset to 31 on successful transmission
- 802.11 adaptive scheme is unfair
 - Under contention, unlucky nodes will use larger cw than lucky nodes (due to straight reset after a success)
 - Lucky nodes may be able to transmit several packets while unlucky nodes are counting down for access
- Fair schemes should use same cw for all contending nodes (better for high congestion too)


802.11 DCF (CSMA-CA)

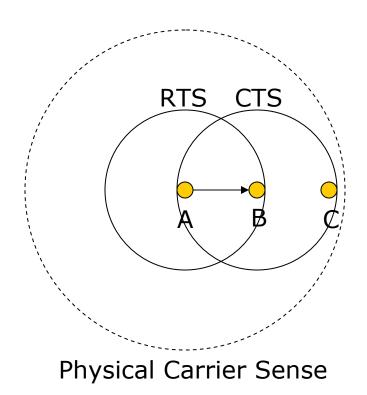
Full exchange with "virtual" carrier sense (called the Network Allocation Vector)

Virtual Carrier Sense

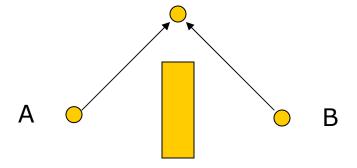

- Provided by RTS & CTS
- Designed to protect against hidden terminal collisions (when C can't receive from A and might start transmitting)
- However this is unnecessary most of the time due to physical carrier sense

Physical Carrier Sense Mechanisms

- Energy detection threshold
 - Monitors channel during "idle" times between packets to measure the noise floor
 - Energy levels above the this noise floor by a threshold trigger carrier sense
- DSSS correlation threshold
 - Monitors the channel for Direct Sequence Spread Spectrum (DSSS) coded signal
 - Triggers carrier sense if the correlation peak is above a threshold
 - More sensitive than energy detection (but only works for 802.11 transmissions)
- High BER disrupts transmission but not detection

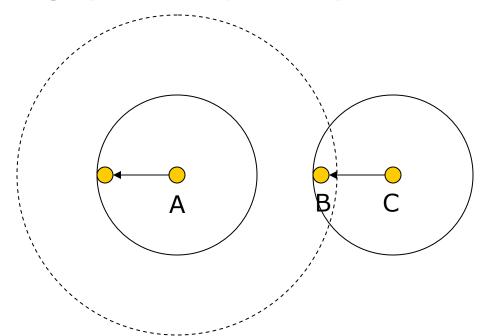

Physical Carrier Sense Range

- Carrier can be sensed at lower levels than packets can be received
 - Results in larger carrier sense range than transmission range
 - More than double the range in NS2 802.11 simulations
- Long carrier sense range helps protect from interference

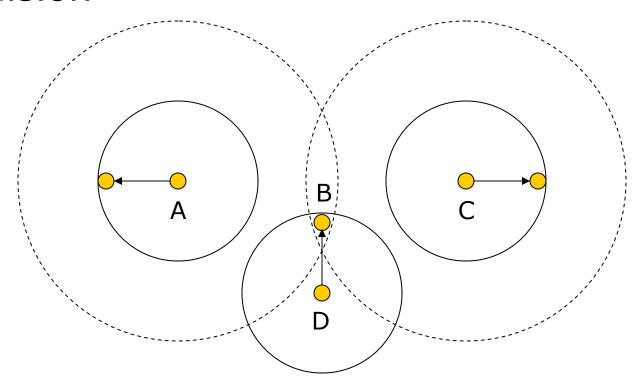

Hidden Terminal Revisited

Virtual carrier sense no longer needed in this situation

RTS CTS Still Useful Sometimes


Obstructed hidden terminal situation

Fast collision resolution for long data packets


Exposed Terminal Problem

- Hidden terminal is not the only challenge for a distributed wireless MAC protocol
- A blocks B, and C doesn't know what is happening (B is exposed)

Double Exposure Problem

If A and C are out of phase, there is NO time D can transmit without causing a collision

