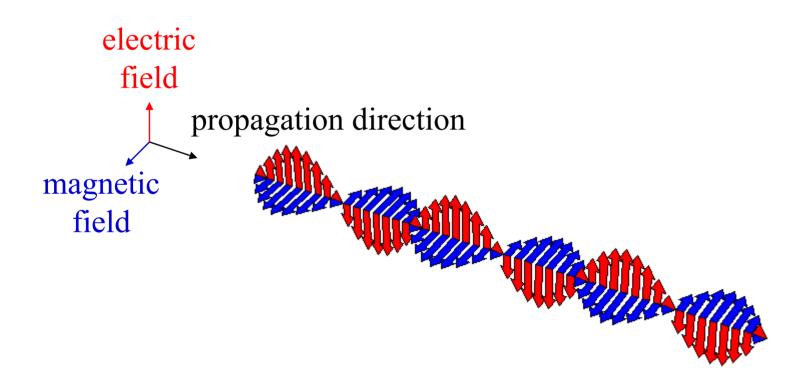
Wireless Communication Fundamentals

David Holmer dholmer@jhu.edu

Physical Properties of Wireless

- Makes wireless network different from wired networks
- Should be taken into account by all layers


Wireless = Waves

- Electromagnetic radiation
- Emitted by sinusoidal current running through a wire (transmitting antenna)
- Creates propagating sinusoidal magnetic and electric fields according to Maxwell's equations:

$$\oint \mathbf{E} \cdot d\mathbf{A} = q/\varepsilon_0 \qquad \qquad \oint \mathbf{B} \cdot d\mathbf{A} = 0 \qquad \qquad \oint \mathbf{E} \cdot d\mathbf{s} = -\frac{d\Phi_{\mathbf{B}}}{dt} \qquad \qquad \oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 \epsilon_0 \frac{d\Phi_{\mathbf{E}}}{dt} + \mu_0 \, i_{\rm exc}$$

• Fields induce current in receiving antenna

Wave Propagation Example

Frequency & Public Use Bands

 Propagating sinusoidal wave with some frequency/wavelength

$$f = \frac{c}{\lambda}$$

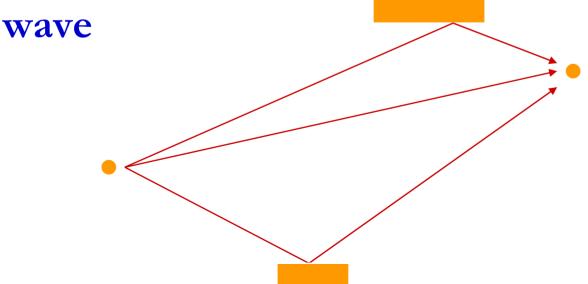
• C (speed of light) = $3x10^{8 \text{ m/s}}$

Name	900 Mhz	2.4 Ghz	5 Ghz
Range	902 - 928	2.4 - 2.4835	5.15 - 5.35
Bandwidth	26 Mhz	83.5 Mhz	200 Mhz
Wavelength	.33m / 13.1"	.125m / 4.9"	.06 m / 2.4"

Free-space Path-loss

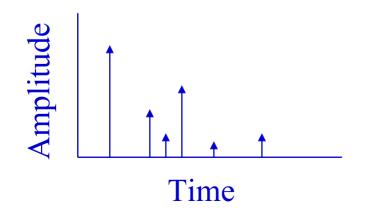
- Power of wireless transmission reduces with square of distance (due to surface area increase of sphere)
- Reduction also depends on wavelength
 - Long wave length (low frequency) has less loss
 - Short wave length (high frequency) has more loss

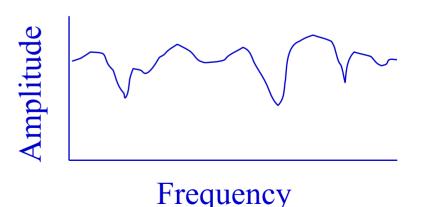
$$P_L = \left(\frac{4\pi D}{\lambda}\right)^2$$


Other Path-loss Exponents

Path-Loss Exponent Depends on environment:

```
Free space 2
Urban area cellular 2.7 to 3.5
Shadowed urban cell 3 to 5
In building LOS 1.6 to 1.8
Obstructed in building 4 to 6
Obstructed in factories 2 to 3
```


Multi-path Propagation


- Electromagnetic waves bounce off of conductive (metal) objects
- Reflected waves received along with direct

Multi-Path Effect

- Multi-path components are delayed depending on path length (delay spread)
- Phase shift causes frequency dependent constructive / destructive interference

Modulation

- Modulation allows the wave to carry information by adjusting its properties in a time varying way
 - Amplitude
 - Frequency
 - Phase
- Digital modulation using discrete "steps" so that information can be recovered despite noise/interference
 - 8VSB US HDTV
 - BFSK Mote Sensor Networks
 - QPSK 2 Mbps 802.11 & CMDA(IS-95)

Multi-transmitter Interference

- Similar to multi-path
- Two transmitting stations will constructively/destructively interfere with each other at the receiver
- Receiver will "hear" the sum of the two signals, which usually means garbage