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Navigation without additional tools

Learning-based 

method

Liu, X. et al., "Self-supervised Learning for Dense Depth Estimation in Monocular Endoscopy", CARE Workship 2018
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• Variance:

Statistical shape models

• Given shapes,  , with correspondences, we can 
compute:

• Mean:



Statistical shape models

• Variance along the principal mode for middle turbinates



Statistical shape models

• Given a new shape, , we can compute:

• Mode weights: • Estimated shape:



Estimate anatomy without CT scan

• Build statistical shape models 

• Principal component analysis

• Capture anatomical variation
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Deformable most likely point (D-IMLP)

Find R, t and a such that x is best aligned with a deformed y…

Find s such that y deforms to fit x
y𝑖 ∈ Ψ X = {x𝑖}

𝑓(yi, s)



Find R, t and a such that x is best aligned with a deformed y…

Find s such that y deforms to fit x
y𝑖 ∈ Ψ X = {x𝑖}

and such that the normal of y aligns with that of x

𝑓(yi, s), ,

Generalized deformable most likely oriented point 
(GD-IMLOP)
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Did it work?

≈ 𝜒2 distribution

≈ 𝜒2= distribution
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Experiments



Leave-one-out

• # sample point: 3000

• Translational offset: [0, 10] mm

• Rotational offset: [0, 10] degrees

• Noise:

• 0.5 × 0.5 × 0.75mm3

• 10° (𝑒 = 0.5)

• Noise assumed:

• 1 × 1 × 2mm3

• 30° (𝑒 = 0.5)

• 𝑛𝐦 ∈ {0, 10, 20, 30, 40, 50}

Right nasal airway
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Leave-one-out

TRE = 0.34 (± 0.03)mm

𝑝 = 0.95 (very confident)



Leave-one-out

𝑝 = 0.9975 (confident)

TRE = 0.62 (± 0.03)mm



Leave-one-out

𝑝 = 0.9999 (somewhat confident)

TRE = 0.78 (± 0.04)mm



Leave-one-out

𝑝 = 0.999999 (low confidence)

TRE = 0.80 (± 0.05)mm



Leave-one-out

remaining (no confidence)

TRE > 1 mm



In vivo

• 5 clinical sequences

• 3000 sample points

• Noise assumed:

• 1 × 1 × 2mm3

• 30° (𝑒 = 0.5)

• 𝑛𝐦 ∈ {0, 10, 20, 30, 40, 50}

Right nasal airway Dense reconstruction 
from video



In vivo

# 
registrations

Residual 
error
(mm)

Max
error
(mm)

Min
error
(mm)

All registrations 30/30 1.09 (±1.03) 4.74 0.50

Registrations that pass Ep test 27/30 0.76 (±0.14) 0.99 0.50

Registrations that pass Ep and Eo tests 12/30 0.78 (±0.07) 0.94 0.72



Conclusions and future work

• Navigation without additional tools

• Estimate anatomy without CT scan

• Assign confidence to registration

• Learn statistics from 1000s of CTs

• Use additional features

• Evaluate further on in vivo data
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