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A B S T R A C T

In this paper, we present three deformable registration algorithms designed within a paradigm
that uses 3D statistical shape models to accomplish two tasks simultaneously:

1) register point features from previously unseen data to a statistically derived shape (e.g.,
mean shape), and

2) deform the statistically derived shape to estimate the shape represented by the point features.
This paradigm, called the deformable most-likely-point paradigm, is motivated by the idea that
generative shape models built from available data can be used to estimate previously unseen
data. We developed three deformable registration algorithms within this paradigm using statistical
shape models built from reliably segmented objects with correspondences. Results from several
experiments show that our algorithms produce accurate registrations and reconstructions in a
variety of applications with errors up to CT resolution on medical datasets. Our code is available
at https://github.com/AyushiSinha/cisstICP.

c© 2019 Elsevier B. V. All rights reserved.

1. Introduction

Ease of access to many digital imaging technologies like
cameras that capture images and videos, depth cameras and
laser rangefinders that can digitize physical objects as 3D ob-
jects (Koller et al., 2004), trackers that can capture motion,
and medical imaging techniques that noninvasively image in-
ternal anatomy in 2D and 3D, has created a vast repository
of imaging data. Several techniques have been developed
toward solving the problem of segmenting objects in differ-
ent types of images (Ferrante and Paragios, 2017; Zhu et al.,
2016), and establishing correspondences between segmented
objects (Van Kaick et al., 2011). Object segmentations and
correspondences enable the computation of object statistics via
statistical shape models (SSMs) (Cootes et al., 1995). SSMs
not only allow us to better understand the variation in a given
population, but are also useful in several applications like im-
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proving segmentations (Heimann and Meinzer, 2009) and cor-
respondences (Seshamani et al., 2011; Sinha et al., 2017).

Generative shape models further allow new instances of ob-
jects to be estimated, making them extremely powerful tools
in many applications. One area that can benefit tremendously
from generative models is the field of medicine. As mentioned
before, the ease of access to medical imaging technologies has
created an abundance of medical image data in many different
modalities, like x-ray scans, computed tomography (CT) scans,
magnetic resonance (MR) images, etc. This begs the question
of whether we can use these existing images to build a frame-
work that can estimate the anatomy of new patients.

In this paper, we present a deformable registration paradigm
that can register a point cloud to a statistically derived target
shape while deforming the target shape using statistical modes
to reflect the shape represented by the point cloud. We build
upon the most-likely-point paradigm (Billings et al., 2015), and
extend this paradigm to include deformations based on statis-
tics in the optimization. Our framework enables the develop-
ment of several deformable registration algorithms using dif-
ferent features, noise models, and statistical shape models. We
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present three deformable registration algorithms built upon this
paradigm that can be used in several applications including sur-
gical procedures like orthopedic interventions and minimally
invasive surgeries.

Orthopedic procedures involving the hip or femoral head
generally require a full pelvic CT scan to be acquired preop-
eratively, since CT images exhibit high contrast between bone
and soft tissue. This allows for easy pelvic surface extraction
from the preoperative image, which can be used for preoper-
ative planning as well as for navigation during surgery. Min-
imally invasive procedures such as functional endoscopic si-
nus surgery (FESS) also require high resolution preoperative
CT scans not only because the nasal airway and sinuses are
thin and complex structures, but also because the bones sur-
rounding the sinuses are extremely thin (Berger et al., 2013).
For instance, the ethmoid bone is on average less than 1 mm
thick and also has a pseudo stochastic growth pattern (Kainz
and Stammberger, 1989). This makes the anatomy too complex
to memorize or guess, and can cause difficulty for surgeons to
maintain orientation during surgery. Since critical structures,
like the brain, carotid arteries, eyes and optic nerves, lie imme-
diately adjacent to the ethmoid bone (Tao et al., 1999), violating
them can cause serious injury. These complexities, along with
the restricted field of view of endoscopes, make imaging and
navigation vital tools in minimally invasive procedures. These
tools allow surgeons to maintain orientation by providing a reg-
istered reference to preoperative anatomy.

CT image acquisition, however, exposes patients to high
doses of ionizing radiation and can have adverse effects. Both
the pelvic region and the head contain important organs, and
minimizing radiation exposure to these organs is vital. For
patients, especially women, of reproductive age, reducing ra-
diation exposure to reproductive organs is an extremely im-
portant objective (Ogilvy-Stuart and Shalet, 1993). Our aim,
therefore, is to reduce or eliminate the use of CT images, and
instead use SSMs of target anatomical structures along with
points extracted from these structures intraoperatively using op-
tical trackers, endoscopic video, etc. to accurately estimate pa-
tient anatomy via deformable registration.

In the following sections, we review the prior work in
the field of registration, describe the deformable most-likely-
point paradigm, and develop three algorithms using PCA based
SSMs. Finally, we demonstrate the registration and reconstruc-
tion accuracy achieved by our methods via simulated experi-
ments, and also show preliminary results on in vivo clinical
data.

2. Previous work

Several point-to-point and point-to-surface registration algo-
rithms have been explored in the past. Iterative closest point
(ICP) is a standard algorithm that has been used extensively for
such registrations (Besl and McKay, 1992; Chen and Medioni,
1992). ICP is a two step algorithm that iterates between find-
ing the closest point correspondences between point sets and
finding the rigid registration that best aligns the matched points
until convergence (Fig. 1). ICP is a simple and elegant method,

but it suffers from some disadvantages, like sensitivity to noise
and outliers.

y𝑖 ∈ Ψ X = {x𝑖}

Fig. 1. ICP iterates between find-
ing point correspondences be-
tween data points, xi, and model
shape points, yi, and comput-
ing the transformation that best
aligns the matches.

In order to improve upon
these, several variants of
ICP (Rusinkiewicz and Levoy,
2001) have been presented
to handle sparse and noisy
point sets with outlier rejec-
tion (Chetverikov et al., 2002;
Phillips et al., 2007; Bouaziz
et al., 2013). ICP has also
been presented in probabilistic
frameworks. Rangarajan et al.
(1997) compute a probabilistic
soft-match between each data
point in the moving point set and every point in the target set
based on Mahalanobis distance. EM-ICP computes multiple
matches weighted by normalized Gaussian weights for each
moving point and solves for both matches and transformation
parameters using expectation maximization (EM). (Granger
et al., 2001; Granger and Pennec, 2002) Generalized-ICP uses
a probabilistic framework to compute the transformation that
minimizes Euclidian distance between point-to-point corre-
spondences computed in the same way as in ICP (Segal et al.,
2009). Ideas from several of these probabilistic methods were
combined in the iterative most likely point algorithm to find a
single most probable match for each data point and compute
the transformation that minimizes the Mahalanobis distance
between these point-to-point correspondences (Billings et al.,
2015).

Point-based matching has also been extended to include ad-
ditional information such as orientations associated with the
points and surfaces allowing disambiguation between points
facing opposite directions. Initial methods used orientations
to prune invalid point matches (Zhang, 1994; Pulli, 1999) be-
fore incorporating orientations within the cost function to be
minimized. Assuming small normal differences, Granger et al.
(2001) used the Mahalanobis distance between oriented points
to formulate a closed form solution for their minimization prob-
lem. Orientation noise modeled using the analogues of Gaus-
sian distributions on a unit sphere have also been incorporated
into registration problems (Billings and Taylor, 2014, 2015).
Deformable versions of ICP have also been presented that de-
termine the displacement field between correspondences con-
strained by a stiffness term (Amberg et al., 2007). Coherent
point drift (Myronenko and Song, 2010) solves for a displace-
ment field that optimizes soft matches in an EM-ICP setting.
Hufnagel et al. (2009) incorporated SSMs in an EM-ICP ap-
proach that alternates between optimizing transformation pa-
rameters and deformation parameters.

We present algorithms that extend the ideas of Hufnagel
et al. (2009) by building upon the most-likely-point paradigm
presented in Billings et al. (2015) to register data points to a
model shape. Registration algorithms within the most-likely-
point paradigm also iterate between finding correspondences
between point sets and finding the rigid alignment between the
correspondences, except that the correspondences are proba-
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bilistically most likely matches (Billings et al., 2015), not clos-
est point matches as in ICP, computed using a maximum likeli-
hood setup. We extend this paradigm by incorporating informa-
tion about the probability that the model shape will deform by
a particular amount. Therefore, we find, for each sample point,
the most likely match on a shape that is also being deformed to
fit the sample points. The information about how a shape will
deform is obtained from SSMs, as in Hufnagel et al. (2009), that
can be built for a particular structure or region of interest (ROI)
using a set of homologous shapes representing this structure or
ROI (Chintalapani et al., 2007).

Our shape models are built using principal component anal-
ysis (PCA) on a set of shapes obtained by deformably regis-
tering (Avants et al., 2011) ns patient head CTs to a template
CT (Avants et al., 2010), and using the resulting deformation
fields to deform a mesh in template space to the respective pa-
tient CTs (Sinha et al., 2016). Each of these shapes then has
nv corresponding vertices, and can be zero-centered to compute
the mean shape:

V̄ =
1
ns

ns∑
j=1

V j,

where V j denotes the stacked vector of vertices, V =

[v1 v2 . . . vnv ]T, for the jth mesh. The principal modes of vari-
ation, m, and the mode weights, λ, which represent the amount
of shape variation along the corresponding m, are computed
by performing an eigen decomposition of the shape covariance
matrix, ΣSSM:

ΣSSM =
1
ns

ns∑
j=1

(V j − V̄)(V j − V̄)T

= [m1 . . .mns ]


λ1

. . .

λns

 [m1 . . .mns ]
T.

The mean shape and the modes of variation define an SSM.
Since this is a generative model, any homologous shape V∗ can
be estimated as

Ṽ∗ = V̄ +

nm∑
j=1

b jm j, (1)

where nm < ns is a user selected number of modes, and b j are
the mode weights or shape parameters that define how much
V∗ varies from the mean shape along each mode. These can be
computed by projecting the mean subtracted V∗ onto the modes:

b j = m j
T(V∗ − V̄).

In order to convert the shape parameters to units of standard
deviation (SD) relative to the SSM covariance, we can rewrite
Eq. 1 as

Ṽ∗ = V̄ +

nm∑
j=1

s jw j, (2)

where w j =
√
λ jm j are the weighted modes of variation, and s j

are the shape parameters in units of standard deviation. These
can be obtained by projecting the mean subtracted V∗ onto the
modes and dividing by the standard deviation.

We extend the most-likely-point paradigm to incorporate
SSMs and estimate the patient shape by transforming three rigid
registration algorithms to deformable registration algorithms.
We briefly introduce these three rigid algorithms here for ease
of reference and to establish notation.

The first, iterative most likely point (IMLP) algorithm, incor-
porates a generalized Gaussian noise model that accounts for
anisotropic positional noise (Billings et al., 2015). Assuming
measurement errors to be independent, zero-mean, multivari-
ate Gaussian with anisotropic covariance, the match likelihood
function for each data point, x, transformed by a current rigid
registration estimate, [R, t], is defined as

fmatch(x; y,Σx,Σy,R, t) =

1√
(2π)3|Σ|

· e−
1
2 (y−Rx−t)TΣ−1(y−Rx−t),

(3)

where Σ = RΣxRT + Σy, and Σx and Σy are measurement error
covariances for data points, x ∈ X, and corresponding points, y,
on the model shape, Ψ, respectively (Billings et al., 2015).

The second algorithm is the iterative most likely oriented
point (IMLOP) algorithm which, in addition to a general-
ized Gaussian noise model that accounts for anisotropic posi-
tional measurement errors, also incorporates an isotropic Fis-
cher noise model to account for orientation measurement er-
rors (Billings and Taylor, 2014), since the Fischer distribution is
the analog of the Gaussian distribution on a unit sphere (Mardia
and Jupp, 2008). For simplicity, we introduce u = yp −Rxp − t,
where x = (xp, x̂n) is an oriented data point with position com-
ponent xp and orientation component x̂n, and y = (yp, ŷn) is the
oriented point on the model shape,Ψ, that is assumed to be in
correspondence with x. Assuming both position and orientation
errors are zero-mean, independent and identically distributed,
the match likelihood function for each oriented data point, x,
transformed by a current rigid registration estimate, [R, t], is
defined as

fmatch(x; y,Σx,Σy, κ,R, t) =

1√
(2π)3|Σ| · 2π(eκ − e−κ)

· eκŷnRx̂n−
1
2 uTΣ−1u,

(4)

where κ is the concentration parameter of the orientation noise
model. The oriented model point, y ∈ Ψ, is also a parameter of
the joint distribution from which the orientation noise is drawn,
where ŷn is the central direction and yp is the mean position.

The final algorithm is the generalized iterative most likely
oriented point (G-IMLOP) algorithm, which incorporates both
an anisotropic Gaussian noise model and an anisotropic Kent
noise model to account for measurement errors in position
and orientation, respectively (Billings and Taylor, 2015). The
anisotropic Kent distribution is the analog of the anisotropic
Gaussian distribution on a unit sphere (Mardia and Jupp, 2008).
Again, we introduce α = κŷnRx̂n and ε = 1

2 uTΣ−1u, for sim-
plicity, along with some new parameters. The ellipticity pa-
rameter, β, controls the amount of anisotropy in the orienta-
tion noise model. The larger the value of β, the greater the
anisotropy, while β = 0 reduces the orientation noise model to
an isotropic Fisher model as formulated in Eq. 4. Major and mi-
nor axes, γ̂1 and γ̂2, define the directions of the elliptical level
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sets of the Kent distribution on the unit sphere. The major and
minor axes and the central direction, ŷn, are all orthogonal to
each other.

With these terms defined, again assuming both position and
orientation errors are zero-mean, independent and identically
distributed, the match likelihood function for each oriented data
point x, transformed by a current registration estimate, [R, t], is
defined as

fmatch(x; y,Σx,Σy, κ, β, γ̂1, γ̂2,R, t) =

1√
(2π)3|Σ| · c(κ, β)

· eα+β
(
(γ̂1

TRx̂n)2
−(γ̂2

TRx̂n)2)
−ε ,

(5)

where 0 ≤ 2β < κ and c(κ, β) is the normalizing constant of the
Kent distribution consisting of complex modified Bessel func-
tions (Mardia and Jupp, 2008).

3. Material and methods

3.1. The deformable most-likely-point paradigm

We extend the aforementioned rigid registration formulations
(Sec. 2) to include a probabilistic model for shape likelihood
and present deformable registration algorithms based on the
most-likely-point paradigm (Billings et al., 2015). Assuming
independence between the matches found between data points
and model shape and the deformation of the model shape, we
can formulate the following deformable match likelihood func-
tion (Billings, 2015):

fmatch deformable(x, y; θ, s, V̄,W)
= fmatch(x; Tssm(y), θ) · fshape(Tssm(y); s),

where fmatch can be any point to point or point to shape ma-
tch likelihood function, such as those defined in Eqs. 3, 4,
and 5, with θ representing the distribution parameters of the ma-
tch likelihood function. The definition of fshape depends on the
type of model used to compute the shape statistics. For PCA-
based SSMs, fshape depends on the shape parameters, s, defined
in Eq. 2:

fshape(V; s) =

nv∏
i=1

fvertex(vi; s),

where fvertex(v; s) =

nm∏
j=1

1
(2π)3/2 .e

||s j ||
2
2

2 .

Similarly, the definition of Tssm(y) also depends on the type of
statistical model being used. Our statistical models are com-
puted on shapes represented by triangular meshes. Since we
compute point-to-triangle matches between each x and Ψ dur-
ing the correspondence phase, we know that each matched
point, y, on Ψ resides within the convex hull of the triangle
face it is matched to. Therefore, it can be represented as the
weighted sum of the triangle vertices,

y =

3∑
j=1

µ( j)v( j) subject to
3∑

j=1

µ( j) = 1.

Every time the model shape is deformed using the current shape
parameters during optimization, the deformed matched point
can be estimated using these vertex weights, µ( j), along with
the current vertex locations:

Tssm(yi) =

3∑
j=1

µ
( j)
i Tssm(v( j)

i ). (6)

How the vertices are deformed is dependent on the shape model
being used to estimate the deformation. Using a generative
PCA model, the deformed vertex positions are computed as
Tssm(vi) = v̄i +

∑nm
j=1 s jw(i)

j , where w(i)
j is the component of the

weighted mode, w j = [w(1)
j . . .w(nv)

j ]T, that corresponds to the
ith vertex, vi.

3.1.1. Correspondence phase
The matched points are computed during the correspondence

phase of our deformable registration algorithms. The defor-
mable version of the correspondence phase is similar to the
correspondence phase in the corresponding rigid registration
algorithms. The rigid algorithms use principal direction (PD)
trees (Billings et al., 2015) to efficiently search for the most
likely match, and the PD-tree search techniques remain the
same for the deformable algorithms. However, since the posi-
tions of the vertices that define the model shape change at every
iteration, the PD-tree also must be updated at every iteration.

Since the topology of the model shape does not change with
deformation, the PD-tree does not need to be reconstructed at
every iteration. Instead, only the positions of the vertices repre-
senting the model shape within the PD-tree need to be updated
as the model shape changes based on the current model-shape
parameters, s, as well as the oriented bounding boxes that bound
these vertices within each PD-tree node.

3.1.2. Registration phase
Once matched points are found, a transformation to align

corresponding points can be computed during the registration
phase by maximizing the total deformable mat-ch likelihood
function over all corresponding points with respect to both the
data transformation parameters and the deformable shape pa-
rameters:

fmatch deformable(X,Y; θ, s, V̄,W)

=

ndata∏
i=1

fmatch(xi; Tssm(yi), θi)

 · fshape(Tssm(Y); s)
(7)

Maximizing the total deformable match likelihood function
(Eq. 7) is equivalent to minimizing its negative log, or the total
deformable match error function:

Ematch deformable(X,Y; θ, s)

=

ndata∑
i=1

Ematch(T(xi); Tssm(yi), θi, s) +
1
2

nm∑
j=1

∥∥∥s j

∥∥∥2
2 ,

(8)

where Ematch(·) is the negative log likelihood of the correspond-
ing match likelihood function, such as those defined in Eqs. 3, 4,
and 5, and T(xi) is the standard transformation applied to the
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data points, again as defined in Eqs. 3, 4, and 5. Tssm(yi) is the
SSM-based deformable transformation applied to the matched
point, yi, as defined in Eq. 6, and si are the deformable shape
parameters. For PCA-based SSMs, we assume that the data has
a Gaussian distribution, and therefore, the shape parameters, s,
for each mode may be constrained between ±3 SDs from the
mean shape since this interval covers 99.7% of variations. In
our implementation, s is initialized to 0, meaning the registra-
tion starts with the mean shape. However, s may be initialized
differently.

3.2. Deformable iterative most likely point (D-IMLP) algo-
rithm

The match likelihood function for IMLP (Eq. 3) yields a ma-
tch error function of

EIMLP(x, y,Σx,Σy,R, t) = log |Σ|

+ (y − Rx − t)TΣ−1(y − Rx − t),
(9)

which, after dropping the constant terms, leads to the simplified
registration cost function of

T = argmin
[R,t]

ndata∑
i=1

(yi − Rxi − t)TΣ−1
i (yi − Rxi − t),

where Σi = RΣxiRT + Σyi (Billings et al., 2015). Substitut-
ing EIMLP from Eq. 9 into the Ematch term (Eq. 8) to derive the
deformable registration cost function for the deformable iter-
ative most likely point (D-IMLP) algorithm (Fig. 2) results in

T = argmin
[R,t],s

(
1
2

ndata∑
i=1

(
(Tssm(yi) − Rxi − t)T

(RΣxiRT)−1(Tssm(yi) − Rxi − t)
)

+
1
2

nm∑
j=1

∥∥∥s j

∥∥∥2
2

)
,

(10)

where a factor of 1
2 , which was excluded from EIMLP (Eq. 9)

for simplification, has been added back, and the shape co-
variances, Σyi, are all assumed to be zero since our focus
is on the derivatives introduced by the shape deformations
during optimization. This extends the work of Hufnagel
et al. (2009) by allowing for more general (or unconstrained)

y𝑖 ∈ Ψ X = {x𝑖}

Fig. 2. Inputs for D-IMLP: Mean
mesh with modes (left), and
point samples with positional
noise model (right).

noise models to be associated
with point features and simulta-
neously solving for both shape
and transformation parameters
based on point-to-point corre-
spondences.

Eq. 10 can be optimized by
computing the gradient with re-
spect to the optimization param-
eters, and applying a nonlinear
quasi-Newton based optimizer. In order to apply the quasi-
Newton solver to minimize Eq. 10, the variables being opti-
mized need to be reparametrized to enforce the algebraic con-
straints of the rotation matrix, that is, RTR = I and det(R) =

1. This is accomplished by using Rodrigues’ parametrization,
which represents a rotation as a 3-vector, r = [rx, ry, rz], whose
direction and magnitude signify the axis and angular extent of
rotation, respectively.

We also re-express the transformation T(xi) in the reference
frame of Y as T(yi) in order to keep all transformation in the
same space. The deformable registration cost function can then
be re-written as

T = argmin
[r,t],s

( ndata∑
i=1

Cmatchi + Cshape

)
, (11)

where

Cmatchi = zi
TΣ−1

xi
zi and Cshape = sTs,

zi = R(r)T(Tssm(yi) − R(r)xi − t)

= R(r)T(Tssm(yi) − t) − xi.

(12)

R(r) is the 3×3 rotation matrix corresponding to the Rodrigues’
vector, r, and is defined as

R(r) = I + sin(θ) skew(α) + (1 − cos(θ)) skew(α)2,

where θ = ‖r‖2 is the magnitude of r, representing the angle of
rotation, α = r

‖r‖ is the unit vector in the direction of r, repre-
senting the axis of rotation, and skew(α) is the skew symmetric
matrix formed using the elements of α.

If the match likelihood function for IMLP was defined for
each data point, x, transformed by a similarity transformation
estimate, [a,R, t], instead of a rigid registration estimate, then
the match likelihood function can be defined similarly as be-
fore:

fmatch(x; y,Σx,Σy, a,R, t) =

1√
(2π)3|Σ|

· e−
1
2 (y−aRx−t)TΣ−1(y−aRx−t),

where a is the scale factor. This term is very similar to Eq. 3,
and produces an slightly modified deformable registration cost
function for D-IMLP compared to Eq. 10, with an extra opti-
mization term, a, for scale:

T = argmin
[a,R,t],s

(
1
2

ndata∑
i=1

(
(Tssm(yi) − aRxi − t)T

(RΣxiRT)−1(Tssm(yi) − aRxi − t)
)

+
1
2

nm∑
j=1

∥∥∥s j

∥∥∥2
2

)
,

which can be re-written similarly to Eq. 11,

T = argmin
[a,r,t],s

( ndata∑
i=1

Cmatchi + Cshape

)
,

with a slight modification in the Cmatchi term in Eq. 12, so that

zi = R(r)T(Tssm(yi) − t) − axi. (13)
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3.3. Deformable iterative most likely oriented point (D-
IMLOP) algorithm

The registration cost function for IMLOP can be derived as

T = argmin
[R,t]

( ndata∑
i=1

(
(ypi − Rxpi − t)T

Σ−1
i (ypi−Rxpi − t)

)
− κ

ndata∑
i=1

ŷT
ni

Rx̂ni

)
,

which is similar to the registration cost function for IMLP, with
an additional term for orientation (Billings and Taylor, 2015).
This allows us to derive the deformable registration cost func-
tion for the deformable iterative most likely oriented point (D-
IMLOP) algorithm (Fig. 3, left):

T = argmin
[R,t],s

(
1
2

ndata∑
i=1

(
(Tssm(yi) − Rxi − t)T

(RΣxiRT)−1(Tssm(yi) − Rxi − t)
)

+κ

ndata∑
i=1

(1 − ŷT
ni

Rx̂ni ) +
1
2

nm∑
j=1

∥∥∥s j

∥∥∥2
2

)
,

(14)

which can be optimized in a similar way as Eq. 10. Using sim-
ilar reparameterizations, Eq. 14 can be rewritten as

T = argmin
[r,t],s

ndata∑
i=1

(
Cpi + Cni

)
+ Cshape

 , (15)

where Cpi is defined as Cmatchi in Eq. 12, and

Cni = κ(1 − ŷT
ni

Rx̂ni ). (16)

The remaining terms are identical to those in Eq. 12.
Again, if a similarity transform was being solved for in the

formulation for IMLOP, then the deformable registration cost
function for D-IMLOP would change slightly to

T = argmin
[a,R,t],s

(
1
2

ndata∑
i=1

(
(Tssm(yi) − aRxi − t)T

(RΣxiRT)−1(Tssm(yi) − aRxi − t)
)

+κ

ndata∑
i=1

(1 − ŷT
ni

Rx̂ni ) +
1
2

nm∑
j=1

∥∥∥s j

∥∥∥2
2

)
,

(17)

which can be rewritten as

T = argmin
[a,r,t],s

ndata∑
i=1

(
Cpi + Cni

)
+ Cshape

 ,
where Cpi is modified in the same way as Cmatchi in Eq. 13, Cni

is defined the same way as in Eq. 16, and any other terms are
identical to those in Eq. 12.

y𝑖 ∈ Ψ X = {x𝑖} y𝑖 ∈ Ψ X = {x𝑖}

Fig. 3. Inputs for D-IMLOP (left) and GD-IMLOP (right): Mean mesh with
normals and modes, and point samples with positional and isotropic (left) or
anisotropic (right) orientation noise models.

3.4. Generalized deformable iterative most likely oriented
point (GD-IMLOP) algorithm

As before, the registration cost function for G-IMLOP is

T = argmin
[R,t]

( ndata∑
i=1

(ypi − Rxpi − t)TΣ−1
i (ypi − Rxpi−t)

−

ndata∑
i=1

(
βi

((
γ̂1i

TRx̂ni

)2
−

(
γ̂2i

TRx̂ni

)2
)

+κiŷT
ni

Rx̂ni

))
,

which is similar to that of IMLOP, with the addition of a term
to control the ellipticity of the Kent distribution. This produces
the following deformable registration cost function for the gen-
eralized deformable iterative most likely oriented point (GD-
IMLOP) algorithm (Fig. 3, right):

T = argmin
[R,t],s

(
1
2

ndata∑
i=1

(
(Tssm(yi) − Rxi − t)T

(RΣxiRT)−1(Tssm(yi) − Rxi − t)
)

−

ndata∑
i=1

βi

((
γ̂1i

TRx̂ni

)2
−

(
γ̂2i

TRx̂ni

)2
)

+

ndata∑
i=1

κi(1 − ŷT
ni

Rx̂ni ) +
1
2

nm∑
j=1

∥∥∥s j

∥∥∥2
2

)
,

(18)

which can also be optimized as before. Using similar reparam-
eterizations as before, Eq. 18 can be rewritten in the form of
Eq. 15, with all terms remaining unchanged except Cni, which
is now defined as:

Cni = κ(1 − ŷT
ni

Rx̂ni )

− βi

((
γ̂1i

TRx̂ni

)2
−

(
γ̂2i

TRx̂ni

)2
)
.

(19)

Again, if the match likelihood function for GD-IMLOP was
defined for a similarity transform, then the deformable registra-
tion cost function for GD-IMLOP would also change the same
way as that for D-IMLOP (Eq. 17), modifying the Rxi terms to
aRxi to reflect the similarity transform applied to x. This new
cost function can also be rewritten in the form of Eq. 15, with
Cpi modified in the same way as Cmatchi in Eq. 13, Cni defined
as in Eq. 19, and any other terms identical to those in Eq. 12.
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4. Experiments and results

In order to evaluate the robustness of our algorithms, we ran
several different experiments. These experiments are performed
using different datasets:

1. 53 mesh sinus dataset extracted from 1mm3 head CTs (Be-
ichel et al., 2015; Bosch et al., 2015; Clark et al., 2013;
Fedorov et al., 2016)

2. 42 mesh pelvis dataset extracted from 1.5× 1.5× 1.5 mm3

CTs (Grupp et al., 2016)
3. in vivo nasal endoscopy data
4. 385 mesh human face dataset (Zhang et al., 2004)

Results from experiments studying the effects of varying sam-
ple size, noise models and outliers, and additional scale param-
eter are presented in Appendix A while some of the key results
from leave-out and clinical experiments are presented here.

For experiments where ground truth is available, registra-
tion results are evaluated based on how well the transforma-
tion and shape parameters are recovered. Errors in rotation
and translation are evaluated by comparing the initial offset ap-
plied to the final transformation produced. The errors in shape
parameter recovery can be measured by computing the differ-
ence between the known shape parameters and those estimated
by our algorithms, or by computing the Hausdorff distance be-
tween the target shape (from which points were sampled) and
the shape recovered by our algorithms (Fig. 4, left). We call
this the total shape error (tSE). We also report the total registra-
tion error (tRE)1 by computing the Hausdorff distance between
the target shape (from which sample points are generated) and
the shape recovered by our algorithms transformed into sample
point space (Fig. 4, right).

4.1. Leave-one-out experiment

The leave-one-out experiment was designed by building ns
SSMs in a ns mesh dataset, with a different shape in the dataset
left out for each SSM construction. This results in 53 different
SSMs for the sinus dataset. The left out shape is then estimated
in two ways:

1. by projecting the left out shape onto the SSM to obtain
mode weights, and using different numbers of modes along
with the mode weights in Eq. 1, and

2. by using our algorithms with different numbers of modes.

We estimated the left out shapes from the sinus dataset us-
ing 11 different numbers of modes, starting at 0 and increasing
at increments of 5 upto 50 modes, producing a total of 1749
registrations. At 0 modes, the algorithms used are the corre-
sponding non-deformable algorithms. This experiment allows
us to evaluate how well our algorithms perform, given shapes
not seen before by the shape model. We can compare the errors
produced by our algorithms in estimating the left out shape to
ground truth since we know what the left out shape looks like

1please note that our total registration error (tRE) is different from target
registration error (TRE) coined by Maurer et al. (1993)

Fig. 4. Registration metrics: tSE (left) measures the Hausdorff distance be-
tween the ground truth shape (green) and the shape estimated by our algorithm
in shape space (blue), not taking the final transformation computed by the algo-
rithm into consideration. tRE (right) measures the Hausdorff distance between
the ground truth shape (green) and the estimated shape (blue) transformed to
sample point space, therefore also adding the transformation computed by our
algorithms into the error metric.

and also to the errors produced by the SSM estimate of the left
out shape. The SSM estimate of the left out shape represents
the upper bound for how well our algorithms can perform. This
experiment allows us to relate the errors produced by our al-
gorithms to how representative the SSM used was of the shape
being estimated.

1000 sample points were generated for each experiment by
uniformly sampling from the left out shape (Fig. 5). An isotro-
pic positional noise model with a SD of 1 mm in each direc-
tion in plane and 1 mm out of plane (1 × 1 × 1 mm3) was used,
since the CT volumes used to segment the sinus structures had
a resolution of 1 × 1 × 1 mm3. An angular noise model with
an SD of 20◦ and an eccentricity factor, e, of 0.5 was used.
The anisotropy of the angular noise model is defined using e,
which takes values within [0, 1). The ellipticity parameter, β
(Eqs. 5, 18), can then be defined using e as β = e κ2 . The al-
gorithms assume the same noise model as was used to generate
the sample points.

4.1.1. Experiment 1: Middle turbinates
In this experiment, the middle turbinate models from the si-

nus dataset were used to generate sample points. The left out
middle turbinates recovered using our algorithms were compa-
rable to both the left-out shapes and the estimates produced by
the SSM (Fig. 6, top). Of the 1749 runs, 57.06% of the D-
IMLP runs recovered the left out mesh with mean tRE less than
1 mm compared to 67.92% of D-IMLOP runs and 90.51% of
GD-IMLOP runs. The mean tRE produced by D-IMLP over all

Fig. 5. An example of data generated for the leave-one-out experiment: points
are sampled uniformly from the middle turbinate (left) and right nasal cavity
(right) meshes.
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runs was 1.30 (± 0.94) mm, while that produced by D-IMLOP
was 0.94 (± 0.56) mm (p < 0.0012 compared to D-IMLP). GD-
IMLOP produced a mean tRE of 0.65 (± 0.31) mm (p < 0.001
compared to both D-IMLP and D-IMLOP).

As the number of shape parameters increased, the perfor-
mance of D-IMLP deteriorated quickly since position informa-
tion from the sample points becomes insufficient information
as the number of parameters to optimize over increases (Fig. 6).
With added normal information, the performance improved, al-
though D-IMLOP showed a similar but less drastic trend as
D-IMLP in recovering the transformation (Fig. 6). Since the
noise model assumed by D-IMLOP does not as accurately de-
scribe the noise in the sample points, errors can be introduced
in correspondences, especially in the depth direction since the
middle turbinate is a long structure extending in the depth di-
rection. GD-IMLOP, however, either showed improvement or
was able to maintain performance with increasing number of
shape parameters (Fig. 6), showing the effectiveness of adding
additional information in the form of normals and making ap-
propriate assumptions about noise in the data. Further, small
translations and rotations can produce an effect of canceling
each other out producing submillimeter tREs despite transla-
tion and rotation errors of 1 mm and 1◦, respectively. Shape
parameters can also drive down tREs despite misalignments in
translation and rotation.

We also computed registrations for this dataset using defor-
mable coherent point drift (CPD), a standard deformable reg-
istration algorithm (Myronenko and Song, 2010). Since defor-
mable CPD produces a deformation field that moves the ver-
tices from the mean shape towards to the sample points to fit the
samples, and does not produce a transformation matrix, we can-
not compute a tRE. However, since we know the original offset
transformation applied to the sample points, we can transform
the final mesh produced by the algorithm by the inverse of the
original transformation and compute the tSE. In order to pro-
duce a transformation matrix, rigid or affine CPD can be per-
formed first, followed by deformable CPD. However, this is not
as time efficient.

Note that since CPD does not use different number of modes
to compute its registration, we show the results from CPD as a
baseline in Fig. 6 (top-right). Although, deformable CPD out-
performs D-IMLP and D-IMLOP, and performs comparably to
GD-IMLOP using more than 20 modes, CPD is considerably
slower than our algorithms. The average time taken to perform
the CPD registrations was 40.55s, compared to 28.89s required
by GD-IMLOP using 50 modes, which is slower than runs using
fewer modes (Fig. 7). D-IMLOP and D-IMLP took 8.96s and
47.69s, respectively, when using 50 modes. Further, the error
metrics produced by our algorithms show correlation with the
tRE (Fig. 8, top and bottom-left), allowing our methods to as-
sign confidence to the registration produced (Sinha et al., 2018).
However, the error produced by CPD does not show correlation
with the tSE (Fig. 8, bottom-right). This error, therefore, cannot
be used to assign confidence to or detect the success or failure

2all statistical significance figures reported in this paper are evaluated using
the paired-sample Student’s t-test

t t

Fig. 6. Leave-one-out experiment: mean tRE (top-left), tSE (top-right), trans-
lation and rotation errors (bottom) obtained using different number of modes
to estimate the left-out middle turbinates and recover the transformations in
Exp. 1.

of the registration produced.

4.1.2. Experiment 2: Right nasal airway
Since both turbinates would generally not be visible at the

same time during an endoscopic procedure, we used the right
nasal airway models to generate sample points in this experi-
ment. The left-out right nasal cavity meshes recovered using
our algorithms were again comparable to the estimates pro-
duced by the SSM, with GD-IMLOP producing mean tSE er-
rors almost equal to those produced by the SSM up to about
30 modes (Fig. 9, top). Of the 1749 runs, 61.01% of the D-
IMLP runs recovered the left out mesh with mean tRE less
than 1 mm compared to 86.16% and 98.51% of D-IMLOP
and GD-IMLOP runs, respectively. The mean tREs produced
by D-IMLP, D-IMLOP, and GD-IMLOP over all runs were

Fig. 7. Leave-one-out experiment: mean time taken by our algorithms to com-
pute registrations using different number of modes.



A. Sinha, S.D. Billings, A. Reiter et al. / Medical Image Analysis (2019) 9

t t
tt

t t

t t

t

Fig. 8. Leave-one-out experiment: residual errors compared against tRE pro-
duced by D-IMLP (top-left), D-IMLOP (top-right), and GD-IMLOP (bottom-
left), and error produced by CPD compared against the tSE (bottom-right) in
Exp. 1. The two measures show correlation using D-IMLP, D-IMLOP and GD-
IMLOP with coefficients 0.91, 0.65 and 0.61, respectively, but not using CPD
(correlation coefficient = 0.05).

1.15 (± 0.63) mm, 0.76 (± 0.40) mm (p < 0.001 compared to
D-IMLP), and 0.60 (± 0.16) mm (p < 0.001 compared to both
D-IMLP and D-IMLOP), respectively. As in the previous ex-
periment, the performance of D-IMLP deteriorated quickly as
the number of shape parameters increased. With added orienta-
tion, D-IMLOP either maintained performance or deteriorated
slowly with increasing number of shape parameters, while GD-
IMLOP either showed improvement or was able to maintain
performance (Fig. 9). As before, these improvements can be
attributed to increasing the amount of information available by
adding orientations and making appropriate noise assumptions
in the presence of increased number of parameters to estimate.

We were not able to compare results from this experiment to
CPD because our machine was unable to handle the memory
overhead of CPD with larger meshes. CPD computes a nv × nv
matrix, where nv is the number of vertices in the deformable
mesh. This results in extremely large memory requirements
even for medium sized meshes, a drawback that our methods
do not suffer from.

4.2. Partial data experiment
This experiment is set up similarly to the leave-one-out ex-

periments, but in order to simulate more realistic scenarios, we
used the pelvis and right nasal cavity SSMs to generate point
samples from part of the left out shape, rather than uniformly
from the entire mesh, for each registration (Fig 10). The part of
the meshes that points are generated from depends on the pro-
cedure being simulated. We design two experiments simulating
two different procedures. For both experiments, 2000 points are
sampled from the candidate regions of the meshes with appro-
priate noise added to the sampled points.

Although we do not have results from CPD due to computa-
tional limitations of CPD with relatively large meshes, we can
assume that it would not perform as well in recovering the shape

t t

Fig. 9. Leave-one-out experiment: mean tRE (top-left), tSE (top-right), trans-
lation and rotation errors (bottom) obtained using different number of modes to
estimate the left-out right nasal cavity meshes and recover the transformations
in Exp. 2.

because CPD only deforms the parts of the mesh that sample
points are matched to and not the overall mesh.

4.2.1. Experiment 1: Pelvis
Using the pelvis dataset, we simulate a situation in which

only a partial CT scan of the pelvis is obtained to prevent ra-
diation exposure to reproductive organs. Points are sampled
only from this partial scan containing the ilium and the ischium
(Fig 10, left), and anisotropic noise with SDs of 1 × 1 × 2 mm3

and 10◦ (e = 0.5) is added to position and orientation data,
respectively. An instance of the pelvis is estimated by our al-
gorithms using these sampled points and a generous noise as-
sumption with SDs of 2 × 2 × 3 mm3 and 30◦ (e = 0.5) for
position and orientation data, respectively. Our algorithms ad-
just these noise assumptions based on inlying matches found
in each iteration (Billings et al., 2015). Noise assumptions are
also restricted from becoming too large in the case of partial
data availability to avoid instabilities (Billings et al., 2015).

Fig. 10. An example of data generated for the partial data experiment: (left)
points are sampled only from the ilium and ischium on the pelvis mesh, and
(right) points are sampled from the front section of the right nostril which in-
clude parts of the septum and middle and inferior turbinates.
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Fig. 11. Partial data experiment: mean tRE (top-left), tSE (top-right), transla-
tion and rotation errors (bottom) obtained using different number of modes to
estimate the left-out pelvis meshes and recover the transformations in Exp. 1.

Results show a big improvement in both transformation pa-
rameters and tSE going from 0 to 10 modes (Fig. 11). How-
ever, with over 10 modes, the improvement in transformation
parameters stabilizes, and only a gradual improvement in tSE
is observed, although the trend followed by the tSE is similar
to that followed by the error between the left out shape and the
SSM instance of the left out shape (Fig. 11, top-right). The re-
sulting tRE falls below 2 mm, the desired accuracy for pelvis
registrations, with only 10 modes (Fig. 11, top-left). The mean
tREs produced by D-IMLP, D-IMLOP, and GD-IMLOP over all
runs were 2.10 (± 0.54) mm, 1.96 (± 0.51) mm (p < 0.001 com-
pared to D-IMLP), and 1.96 (± 0.56) mm (p < 0.001 compared
to D-IMLP), respectively. The improvement in these errors is
also reflected in the residual errors produced by our algorithms
(Fig. 13, left).

4.2.2. Experiment 2: Right nasal airway
Using the right nasal cavity models, we simulate points that

would be generated from nasal endoscopy. Points are sam-
pled only from parts of the nasal cavity that would be visible
to the endoscope when inserted into the nose (Fig 10, right)
and anisotropic noise with SDs of 0.5 × 0.5 × 1 mm3 and 10◦

(e = 0.5) is added to position and orientation data, respectively,
since this produced point clouds that resembled reconstructions
obtained from in vivo data using the method described in the
following section (Sec. 4.3). Positional noise in the generated
samples has a larger standard deviation in the z-direction be-
cause depth is harder to estimate from video. The left out nasal
cavity is then estimated using these sampled points and a noise
model assumption with SDs of 1× 1× 2 mm3 and 30◦ (e = 0.5)
for position and orientation data, respectively.

This experiment yielded slightly different results due to the
increased complexity of this data. Although the rotation errors

t t

Fig. 12. Partial data experiment: mean tRE (top-left), tSE (top-right), transla-
tion and rotation errors (bottom) obtained using different number of modes to
estimate the left-out right nasal cavity meshes and recover the transformation
in Exp. 2.

either remained stable or showed improvement with increas-
ing number of modes, rotation errors remained stable or de-
graded, as in the case of D-IMLOP (Fig. 12, bottom). The tSE
only showed steady improvement in the case of GD-IMLOP
(Fig. 12, top-right). However, the mean tSE for all algorithms
remained below 1 mm. Combined, only GD-IMLOP showed
improved tREs as the number of modes increased and consis-
tently produced errors below 1 mm (Fig. 12, top-left). Mean
tREs produced by D-IMLP, D-IMLOP, and GD-IMLOP over all
runs were 1.29 (± 0.31) mm, 1.00 (± 0.25) mm (p < 0.001 com-
pared to D-IMLP), and 0.80 (± 0.18) mm (p < 0.001 compared
to both D-IMLP and D-IMLOP), respectively. Improvement in
errors produced by GD-IMLOP is reflected in the residual er-
rors produced by the algorithm (Fig. 13, right).

4.3. Clinical data experiment

An anonymized in vivo clinical dataset consisting of en-
doscopic video of the nasal cavity and EM-tracking informa-
tion was obtained from several patients who were examined

t t

t t

Fig. 13. Partial data experiment: residual errors compared against tRE for GD-
IMLOP in (L) Exp. 1 using pelvis data (correlation coefficient = 0.56) and (R)
Exp. 2 using right nasal cavity data (correlation coefficient = 0.64).
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at the Johns Hopkins Outpatient Center. Permission to collect
this dataset, given patient consent, was approved by the Johns
Hopkins internal review board (IRB) under application number
NA 00074677.

A modified version of the learning-based photometric recon-
struction technique developed by Reiter et al. (2016) was used
to reconstruct structures from endoscopic video collected from
patients who volunteered to enroll in our study. Structure from
motion (SfM) points obtained from video sequences (Leonard
et al., 2016, 2018) were used to train a self-supervised deep neu-
ral network that enforces depth consistency between frames us-
ing relative pose information from SfM (Liu et al., 2018). This
network was then used to predict the depth associated with each
pixel in a single video frame. This method computes highly
dense reconstructions of structures visible in the frame. 2000
points each were sampled from reconstructions from two dif-
ferent frames. These samples were manually initialized in the
mean left nasal cavity mesh, and registered using our algorithms
with 10 modes restricted within ±1 SD. The scale estimation
was restricted within [0.7, 1.3], and anisotropic noise models
with SDs of 1 × 1 × 2 mm3 and 40◦ (e = 0.5) were assumed for
position and orientation, respectively.

For the first set, D-IMLP failed to produce a meaningful reg-
istration due to lack of sufficient information since it does not
use orientation information (Fig 14, top-left), and D-IMLOP
failed due to incorrect angular noise assumptions (Fig 14, top-
middle). GD-IMLOP, however, was able to produce sub-
millimeter residual error of 0.92 (±1.44) mm (Fig 14, top-right).
We also compute the tSE between shapes computed by our al-
gorithms and the patient shape automatically segmented as de-
scribed before in Sec. 2. GD-IMLOP was able to estimate the
patient shape with a mean tSE of 0.98 (±0.8) mm.

Using the second set of samples, GD-IMLOP converged with
a residual error of 0.77(±1.18) mm (Fig 14, bottom-right), and
D-IMLOP and D-IMLP also produced submillimeter residual
errors of 0.6 (±0.98) mm and 0.5 (±0.82) mm, respectively
(Fig 14, bottom-left and bottom-middle). All three algorithms
also recover the patient shape successfully with tSEs of 0.95
(±0.88) mm, 0.95 (±0.83) mm, and 0.96 (±0.83) mm for GD-
IMLOP, D-IMLOP, and D-IMLP, respectively.

5. Discussion

In summary, our experiments show that our algorithms ex-
hibit improved performance with increasing number of modes,
and GD-IMLOP outperforms both D-IMLOP and D-IMLP.
This is expected since GD-IMLOP is the most generalized of
the algorithms presented and, therefore, is able to best model
the noise in the data used for our experiments. The leave-out
analysis shows that GD-IMLOP can match the SSM instance
of the left-out shape for some number of modes. However, GD-
IMLOP is slower than D-IMLOP since it solves a more com-
plex objective function. This trade-off between runtime and ac-
curacy is important to keep in mind for difference applications.
GD-IMLOP was able to maintain performance in increasingly
difficult setting such as partial data and unknown noise. Finally,
our clinical evaluations also result in submillimeter mean resid-
ual errors and tSEs.

Fig. 14. Clinical data experiment: With the first point set (top), registration
results using D-IMLP (left) and D-IMLOP (middle) show failed registrations,
while that using GD-IMLOP (right) shows good alignment (along with some
outliers). The second point set (bottom) yields better results, with all three
algorithms producing good alignments. However, we can see that the num-
ber of outliers or bad matches (red points matched to the outside of the nose)
goes down as we go from D-IMLP (left) to D-IMLOP (middle) to GD-IMLOP
(right).

6. Conclusions and future work

In this paper, we have presented a deformable registration
paradigm that can be used to build several different types of
registration algorithms that simultaneously solve for both trans-
formation and shape parameters. We demonstrate this with
three algorithms that use different types of features and noise
models. Additional algorithms can be developed under this
paradigm using different or additional features (e.g., occluding
contours or non-geometric features like RGB values associated
with points), assuming different noise models that better explain
certain types of data (e.g., Poisson distribution), or utilizing dif-
ferent types of generative SSMs (e.g., those that do not assume
Gaussian distribution in the data or that the data lie in a single
subspace).

Our algorithms are validated through several different exper-
iments that show that our methods, especially those that use ori-
entation information in addition to position, can estimate trans-
formation and shape parameters with high accuracy. This result
is further strengthened by the promising performance of our
algorithms in preliminary experiments with in vivo nasal en-
doscopy data. Our algorithms also provide an added advantage
in that the error metrics produced by them correlate with tRE,
allowing our algorithms to assign confidence to the registrations
produced based on the residual errors produced by them.

In the future, we hope to build more extensive shape mod-
els of anatomy using many more CT images (on the order of
thousands) to better explain the variation in different anatom-
ical structures, and also to conduct more clinical experiments
with reconstructions from multiple video frames and spanning
a larger extent of the nasal passage. This will allow us to bet-
ter establish how well we are able to infer anatomical structures
that we do not see in video or have samples from. We also hope
to explore other statistical shape models that can better explain
the variation in more complex regions of the sinuses like the
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ethmoid cells which have a honeycomb-like structure. Addi-
tionally, we plan to incorporate more features, like occluding
contours (Billings et al., 2016), into our framework to further
strengthen the application of these methods in the medical field.

SSMs can also be used in applications outside the medical
field. Initial exploration in learning the range of human facial
expression has shown promising results (Sec. Appendix A.5).
While facial expressions may be hard to visualize when repre-
sented as point clouds, we expect that with enough shapes and
the right SSM, we can infer emotion by registering a statisti-
cally derived shape to the point cloud and reconstructing the
expression being rendered. We also hope to build models better
suited to explain complex data like pose variation, and incorpo-
rate these models, in addition to PCA models, into our frame-
work to enable tasks like pose classification. Our code is avail-
able at https://github.com/AyushiSinha/cisstICP.
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