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Abstract

I. VISION MODULES AND CUE COMBINATION

To what extent is the visual system built by combining modular components? This issue was discussed in
the basic architecture section and viewpoints differed between advocates of separate pathways encoding
different feature dimensions [9], [17] and other who argued against separation because most cells are
sensitive to all dimensions [16] and, premature separation, raises concerns about how different pathways
can be combined in order to yield a unified percept. At the functional/behavioral level, psychophysicists
have studied how humans combine different visual cues — such as shading, texture, binocular stereo,
structure from motion — to get depth. Marr [20] invoked the principle of modular design and proposed that
different cues could be processed by semi-independent modules and then combined into representations
—e.g., Marr’s 2 1/2 D sketch combined different cues for depth into a single representation. Computer
vision researchers have also tended to study these cues in isolation and developed algorithms from them
individually.

We argue that although there is evidence that cues can act independently (and deficit studies show that
damage to localized brain regions is able to knock out some visual cues while leaving others unimpaired).
Nevertheless, evidence suggests that the modules must be capable of tightly interacting in certain situations.
In particular, there is strong evidence that high-level recognition affects the estimation of three-dimensional
shape (e.g., a rigidly rotating inverted face mask is perceived as non-rigidly deforming face, while most
rigidly rotating objects are perceived to be rigid). It is also clear that, despite the partial success of the
models described for segmentation in section (??) (and their more sophisticated descendants), the ability
to perform segmentation relies partially on context and the ability to do object detection, hence involving
some top-down processing.

This section gives an overview of visual cues and the strategies for combining them. Clark and
Yuille [4] argued that cue coupling should be formulated in terms of Bayesian probability theory so
that the uncertainties of the cues could be taken into account and their statistical dependencies made
explicit (previous authors, e.g., Marr [20], had not specified the details of how cues should be combined).
Clark and Yuille [4], see also [24], divided cues coupling into two types: (i) weak coupling” which
corresponded to combining independent cues and which often reduced to combining cues by weighted
averaging, and (ii) ’strong coupling’ which required more sophisticated methods such as model selection,
or ‘competitive priors’, to model phenomena where small changes of one cue can dramatically change
the percept. Since then many studies have shown that humans often couple cues weakly in an optimal
sense — i.e., that they weight the cues based on their reliability.

To understand this it helps to consider how the image is formed from the structure of the real world.
We can think of this in terms of causes. Different factors in the scene combine to cause the image.
These combinations can be complicated and are rarely independent — as they would need to be for weak
coupling to be appropriate. In addition, some visual cues are only valid under special conditions. For
example, classic shape from texture methods assume that there are texture elements of roughly similar
sizes on a surface in the scene. This assumption can be relaxed but nevertheless there are many places in
images where shape from texture cues simply do not exist. Similarly, classic shape from shading models
apply only to Lambertian shading models with known albedo and a single light source.

It is helpful to think of cue combination in terms of graphical models as we illustrate in figure (6).
We stress that these diagrams are conceptual and ignore the details of the models — i.e. each node should



correspond to a lattice of nodes. Figure (6)(B) shows three conditions: (i) the simplest case when a single
cue is present, (ii) where two factors combine to cause an image, and (iii) where there is common cause
of two cues. We show two examples of the later two cases in figure (1).
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Fig. 1. Left Panel: An example of common cause. The shading and binocular stereo cues are caused by the same event — two surface with
one partially occluding the other. Right Panel: The image of the bicycle is caused by the pose of the bicycle, the viewpoint of the camera,
and the lighting conditions.

If it is important to estimate one of the (parent) state variables accurately, the other one needs to be
integrated out, i.e. discounted. Invariance is the flip side of discounting. If both state variables are important,
they can behave as competing hypotheses either of which can explain the data, called “explaining away”.
The parent values are said to be marginally independent (summing over [), but conditionally dependent
once given a measurement. Figure 6B (right) illustrates the case when one cause leads to two effects. The
graph implies that the two measurements are conditionally independent given s. This generative model
is the basis for tests of optimal cue integration. A distinctive prediction of Bayesian observers is that
decisions should be based on full knowledge of the posterior distribution.

Figure 6D & E illustrate a richer generative structure, where there is more than one type of model, m,
that could have produced the measurements. Each model may have its own distinct set of parameters. As
we will describe in subsection (I-B) Knill showed that, when estimating surface orientation from texture
cues, the visual system uses different models depending on evidence in the image [12]. The visual system
usually interprets a 2D texture as caused by an underlying isotropic 3D texture. However, textures may
also be anisotropic. Human surface judgments were well-modeled by a Bayesian observer that assumes
that surfaces in the world can come in the two types.

For the generative structure in Figure 6D, task choices—what to integrate out—becomes a critical modeling
question. What if there is more than one model for the brain to consider? Formally, which model can
be decided by integrating out the proximal causes s, to specify the posterior, p(m|I), on more distal
causes or “models” m that represents the discrete set of model choices. With a generative structure such
as shown in Figure 6D, one could estimate the most probable model AND parameters consistent with
the measurements. Alternatively, one could integrate out the model variables, and find the most probable
parameters. Another study showed that human localization based on combining sound and light behaves
as if it can infer the causal structure (i.e. which kind of graph best explains the data, see Figure 6E), and
then integrate or not integrate cues accordingly [14]. It has also been proposed that humans may choose
a causal structure in proportion to its probability, a strategy in the cognitive decision making literature
known as probability matching [7]. As described in subsection (I-B), Shams et al. [22] provide evidence
that human observers localization judgments were most consistent with probability matching.

A. Weak Coupling

Weak coupling methods assume that the visual cues for depth are modular. This means that they function
independently and then combine their outputs. This combination takes into account the uncertainty in the
cues. If the cues are modeled using Gaussian distributions then this leads to linear weighted averaging.

Early testing of weak coupling models were qualitative but limited [2], [15],[25]. But there is now
considerable evidence for weak coupling. Jacobs [10], and Ernst & Banks [5], there have been numerous
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Fig. 2. Model selection may need to be applied in order to decide is a cue can be used. Shape from shading cues will work for case (a)
because the shading pattern is simple == a smooth convex surface illuminated by a single source. But for case (b) the shading pattern is
complex — due to mutual reflection between the two surfaces — and so shape from shading cues will be almost impossible to use. Similarly,
shape from texture is possible for case (c) because the surface contains a regular texture pattern but is much harder for case (d) because the
texture is irregular.

studies that have tested whether humans combine sensory information weighted by reliability. The majority
of these studies confirm optimality, with interesting exceptions [3], [6]. Most studies of cue integration have
been restricted to continuous-valued measurements whose precision is modeled using standard gaussian
and independence assumptions, and thus a linear weighting function.

To understand how cue coupling can yield linear weighted summation consider a simple model where
the cues 'y, C'y were generated by independent distribution P(C'|S)P(C5|S) where both distributions are
Gaussians.
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The optimal estimation S* = arg max P(C;|S)P(C,|S) is given by:
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This shows that the optimal combined is a weighted linear sum of the two cues. The cue with the
smallest variance will be weighted more highly (i.e. cue C} if 02 < o3.

B. Strong Coupling

Weak coupling is based on a modularity assumption which is often not valid (of course, the visual
system may assume modularity even if it is sub-optimal). There are a range of classic experiments which
are inconsistent with weak coupling [2], [1], [11]. Yuille and Bulthoff [25] interpreted these as variants
of strong coupling using the Bayesian framework developed in [4].

For example, there may be alternative causes which may compete to explain the image and and small
changes in the image can lead to very different interpretations. The work by Blake and Biilthoff [1] is a
classic example where a sphere has a Lambertian (diffuse) reflection function and is viewed binocularly,
see figure (2)(left). A specular component is adjusted so that it can lie in front of, between the center
and the sphere, or at the center of the sphere. If the specularity lies at the center then it is perceived as a
light bulb and the sphere is perceived to be transparent. If the specularity is placed at the right position
between the center and the sphere, then the sphere is perceived to be glossy. If the specularity lies in
front of the sphere then it is seen as a cloud floating in front of a matte (diffuse, Lambertian sphere).
In other experiments [11] there are two surfaces which can be seen to either move rigidly together or to
move independently. Either percept can be obtained by making small variations to the transparency cues,
see figure (3)(right). Yuille and Biilthoff [25] interpreted both these phenomena as strong coupling with
competitive priors.



LICE FEDEUTE WCL IO J'Hi'UF—}' arnc !J.]J"L”U!‘JH‘}'JI(-J'

| . @ ®
w (a) I\ o A
/ s g & -

(b)

€
—— o

‘emodom apava wihare a hamisnhere is viewed binocularly. In (@) 8 (B, s beiemn Al e af s m f N B AT o e s

Fig. 3. Examples of strong coupling with competitive priors. A sphere is viewed binocularly (left) and small changes in the position of the
specularity lead to very different percepts (Blake and Biilthoff 1990). Similarly altering the transparency of the moving surfaces (right) can
make the two surfaces appear to rotate either rigidly together or independently.

Examples of Strong Coupling

This section gives two examples of strong coupling. The first example concerns the perception of texture
while the second example deals with coupling different modalities.

The first example is by Knill and concerns the estimating of depth from texture cues [12]. This relates
to competitive priors because there are several alternative models for generating the image and the human
observer must infer which is most likely. More formally, the data is generated by a mixture of models
which enables non-linear cooperative interaction interactions between cues. In this example the data could
be generated by isotropic homogeneous texture or by homogeneous texture only. Knill’s findings is that
human vision is biased to interpret image texture as isotropic but if enough data is available the system
turns off the isotropy assumption and interprets texture using the homogeneity assumption only.

The posterior probability distribution for .S is given by:

PUS)P(S)
where ¢; is prior probability of model i, and p;(I|S) is correspondmg likelihood function.

More specifically, texture features 7' can be generated by either an isotropic surface or a homogeneous
surface. The surface is parameterized by tilt and slant o, 7. Homogenous texture is described by two
parameters «, # and isotropic texture is a special case where o = 1. This gives two likelihood models for
generating the data:

P (T|(o,71),0,0), Py(T|(o,7),0) )

Here P(T|(o,7),0) = Py(T|(0,7), a0 = 1,6).

Isotropic textures are a special case of homogenous textures (also rigid motion is a special class of
non-rigid motion). The homogeneous model has more free parameters and hence has more flexibility to fit
the data which suggests that human observers should always prefer it. But the Occam factor [19] means
that this advantage will disappear if we put priors P(a)P(#) on the model parameters and integrate them
out. This gives:

P(T|(0,7)) = / / dad0 P, (T(0,7), 0, 0), PA(T|(0,7)) = / 40P, (T} (o, 7).0) 5)



Integrating over the model priors smooths out the models. The more flexible model, P, has only a fixed
amount of probability to cover a large range of data (e.g. all homogeneous textures) and hence has lower
probability for any specific data (e.g. isotropic textures).

Knill describes how to combine these models using model averaging. The combined likelihood function
is obtained by taking a weighted average:

P(T|(o,7)) = pnba(T|(0, 7)) + pi (T (0, 7)), (6)

Where (py,, p;) are prior probabilities that the texture is homogeneous or isotropic. We use a prior P (o, 7)
on the surface and finally achieve a posterior:

P(l|(o, 7)) P(o,7)
P(I)

This model has a rich interpretation. If the data is consistent with an isotropic texture then this model
dominates the likelihood and strongly influences the perception. Alternatively, if the data is consistent
only with homogeneous texture then this model dominates. This gives a good fit to human performance
[12].

The second example involves multisensory integration with structural uncertainty. Human observers are
sensitive to both visual and auditory cues. Sometimes these cues have a common cause — e.g., you see
a dog moving and hear it barking. In other situations the auditory and visual cues are due to different
causes — e.g., a cat moves and a nearby dog barks (we ignore the possibility that the dog’s barking is
caused by the cat moving, or vice versa). Ventriloquists are able to fake these interactions by making the
audience think that a puppet is speaking by associating the sound (produced by the ventriloquist) with the
movement of the puppet. The Ventriloquism effect occurs when visual and auditory cues have different
causes — and so are in conflict — but the audience perceive them as having the same cause.

Kording and his collaborators (Kording et al. 2007) developed an ideal observer model which determines
whether two cues have a common cause or not. They formulated this using a meta-variable C, see
figure (4). The common cause condition C' = 1 means that the positions of the cues x4, ry are generated
by the same process S, see figure (4)(left), by a distribution P(z4,zv|S) = P(xa|S)P(zv|S). Here
P(z4]S) and P(zy|S) are normal distributions N (4|5, 0%), N(xy|S, o) — with the same mean S and
variances 0%, 0% It is assume that the visual cues are more precise than the auditory cues so that 6% > o?.
The true position S is drawn from a probability distribution P(S) which is assumed to be a normal
distribution N (0, 02). By contrast, C' = 2 means that the cues are generated by two different processes
S and Sp, in which case we have P(z4]S4) and P(zy|Sy) which are both Gaussian N(Sy4,0%) and
N(Sy,c%), see figure (4)(right). We assume that S4 and Sy are independent samples from the normal
distribution N (0, crf)). Note that this model involves model selection, between C' = 1 and C' = 2, and so
in vision terminology is a form of strong coupling and competitive priors (Yuille and Biilthoff 1996).

This model was compared to experiments where brief auditory and visual stimuli were presented
simultaneously with varying amount of spatial disparity. Subjects were asked to identify the spatial location
of the cue and/or whether they perceive a common cause [23]. The closer the visual stimulus was to the
audio stimulus the more likely subjects perceived a common cause. In this case subjects’ estimate of its
position is strongly biased by the visual stimulus (because it is considered more precise with o2, > 0%). But
if subjects perceive distinct causes then their estimate is pushed away from the visual stimulus and exhibits
negative bias. Kording et al. (Kordling et al. 2007) argue that this bias is a selection bias stemming from
restricting to trials in which causes are perceived as being distinct. For example, if the auditory stimulus
is at the center and the visual stimulus at 5 degrees to right of center — then sometimes the (very noisy)
auditory cue will be close to the visual cue and hence judged to have a common cause while on other
cases the auditory cause will be further away (more than 5 degrees). Hence the auditory cue will have a
truncated Gaussian (if judged to be distinct) and will yield negative bias.

P(o,7|I) =

)



Fig. 4. The subject is asked to estimate the position of the cues and to judge whether the cues are from a common cause — i.e. at the
same location — or not. In Bayesian terms the task of judging whether the cause is common can be formulated as model selection — are the
auditory and visual cues more likely to generated from a single cause (left) or by two independent causes (right).
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Fig. 5. Reports of causal inference.a) The relative frequency of subjects reporting one cause (black) is shown (reprinted with permission
from [15]) with the prediction of the causal inference model (red). b) The bias, i.e. the influence of vision on the perceived auditory position
is shown (gray and black). The predictions of the model are shown in red. ¢) A schematic illustration explaining the finding of negative

biases. Blue and black dots represent the perceived visual and auditory stimuli, respectively. In the pink area people perceive a common
cause.

More formally, the beliefs P(C|x4,xy) in these two hypotheses C' = 1,2 are obtained by summing
out the estimated positions s 4, sg of the two cues as follows:

P(za,zy|C)P(C)

P(Claa, zy) = B
anxV)
_ JdSP@a)PavISIPS) .,
P(za,xv) ’ ’
_ ffdSAdSVP($A’SA)P<Iv‘Sv)P(SA)P<Sv) if 022 (8)
P(ZCA,Zﬂv) 7 '

There are two ways to combine the cues. The first is causal selection. This estimates the most probable

model C* = arg max P(C|zy,x4) from the input =4, 2y and then uses this model to estimate the most
likely positions s4, sy of the cues from the posterior distribution:

P(xv,zalsv, 54, C*)P(sy, s4]C*) )
P(zy,x4|C*)

The second way to combine the cues is by causal averaging. This does not commit itself to choosing
C* but instead averages over both models:

P(sy,s4) = P(sy,salzy,xa,C*) =




P(sy,salry,24) =Y P(sy,salwy, 14, C)P(Clay,24) =
c

Z P(zy,xalsv,sa4,C)P(sy,s4|C)P(Clry,x4)
- P(zy,zA|C) ’
(10)
where P(C' = 1|xy,z4) = mc (the posterior mixing proportion).
Natarajan et al. [21] investigated these issues further. In particular, they showed that human performance
on these types of experiments could be better modeled by replacing the Gaussian distributions by a more
robust-alternative. It is well-known that Gaussian distributions are non-robust because the tails of their
distributions fall off rapidly which gives very low probability to rare events. Hence in many real-world
applications distributions with longer tails are preferred. Following this reasoning Natarajan et al. assumed
that the observations x4, Xxy were generated by distributions with longer tails. More precisely, they
assumed that the data is distributed by a mixture of a Gaussian distribution (as in the models above) and
a uniform distribution which yields longer tails. More formally, they assume x4 mN (x4 : 54,0%) + %
and vy TN (zy : sy, 0%)+ “T;l’r) where 7 is a mixing proportion and U (x) = 1/ry is a uniform distribution
defined over the range r;.

C. Classes of Probability Models

NEEDS REVISION TO FIT INTO THIS SECTION. MUST EXPRESS THE GENERALITY OF
THE PROBABILISTIC APPROACH. THE FACT THAT NODES MOGHT REPRESENT GROUPS OF
NEURONS AND CONCEPTS LIKE SURFACE.

We now briefly discuss more general classes of probability models. Some of these are illustrated in
figure (6). For a general introduction to these models in cognitive science see [8]
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Fig. 6. Probability models defined on graphs. A specifies an undirected graphical model, which will be used for models involving spatial
processing in sections (??2,??). B,C,D, E show directed graphical models, which will be illustrated in later sections. Models B,D,E will be
used for cue combination in section (I). Model C is used for integrating motion over time in subsection (??).

Graphical models are defined on G = (V,£). Here V denotes the set of graph nodes. State variables
2, are defined on the nodes p € V. A probability distribution P(2) = P({z, : p € V) is defined over the
graph variables.

Broadly speaking there are two types of graphical models (although hybrids exist). For undirected
graphical models, see figure (6)(A), the probability distribution is constructed using potential functions



defined over maximal cliques ¢ € C. A maximal clique is a fully connected set of nodes (i.e. there is
an edge between every pair of nodes in the clique), so that we cannot extend the clique to include extra
nodes without losing fully connectedness. The potential is ¢.(Z.), where Z. is the state of the nodes
in the clique (e.g., (2,,2,) if the clique only contains two nodes s, v). The distribution is expressed
in terms of a Gibbs distribution: P(Z) = + exp{}_ .. #c(Z)}. This graph obeys the markov property:
P(z,|z,) = P(zu{# : (v, ) € £}). The last few subsections give examples of clique potentials, such as
25 Oijzis 25

In directed graphical models, the graph edges £ have direction, see figure (6)(B,C,D,E). For any node
i €V, the set of parent nodes pa(u) are the set of all nodes v € V such that (u,v) € £, where (u,v)
means that there is an edge between nodes 1 and v pointing to node y. This gives a local markov property
— the conditional distribution P(2,|%,) = P(2u|Zpa(u)), 0 the state of z, is only directly influenced by the
state of its parents (note Z,, denotes the states of all nodes except for node 1). The probabilistic models
for divisive normalization are examples of directed graphical models.

We emphasize that many computational models of vision, and other aspects of intelligence, can be
expressed in terms of this probabilistic formulation. This may serve as an intermediate computational level
between models of neural circuits and of behavior. But how can models of these type be implemented
by real neurons? This section has given examples showing that some probability models map nicely onto
simple neural net models. But this mapping may be too simplistic and may also be impractical for more
complicated probability models. This has motivated the study of how populations of neurons may be able
to encode and process probabilities [13], [18].
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