LECTURE NOTE #11

PROF. ALAN YUILLE

1. DECISION TREES

2.
Game of Twenty Questions

Apply a series of tests to the input pattern
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Notation:
Set of classified Data < (zq,wq) : @ € A >
Set of Tests <Tj:j5€ & >
Each test has response "T” or "F” Tj(z,) €< T, F >
Tree nodes < p >
Root node ug at top of tree
Each node either has two child nodes, or is a leaf node.
Each node <y > has a test T),.

Its child node 1 is for data x4 s.t. Ty (z,) =T
1
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Its child node po is for data z, s.t. Tj,(z,) = F

3. DECISION TREE NOTATION

Define the data that gets to node u recursively.
Ay ={za € Ay st Ty(x,) =T}
Ny, ={za € Ay st Ty(x,) = F}

The root node contains all data A, = A

- Distribution of data at node p
1
Pu(wj) = AL ZaeAM 5wa7w]’
>y Pu(wy) =1 i is number of classes.

- Define an impurity measure (entropy) for node
I(p) = =32, Pu(w;) log Py (w;)

Note: if a node is pure, then all data in it belongs to one class.

Intuition: Design a tree so that the leaf nodes are pure -yield good classification

4. ITERATIVE DESIGN

Initialize tree with the root node only (so it is a leaf node).

For all leaf nodes, calculate the maximal decrease in impurity by searching over all the
tests.
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Expand the leaf node with maximal decrease and add its child nodes to the tree.
Decrease in impurity at node u due to test T}

Ny ={z e, st Ty(x) =T}
Ny ={z el st Ty(x)=F}

Decrease in entropy A7 (pu) = I(p) — I(,u{, ,u%)

Where I(p?, pi3) = —A 1 (i) + =521 (1)

Hence, for all leaf node p calculate max; I (,u{, ,w;) Select the leaf node p and test T
which achieve this maximum.

5. GREEDY STRATEGY

Start at root node pg

Expand root node with test that maximize the decrease in impurity - or maximize the
gain in purity.

Repeat with leaf nodes until each node is pure.

Time Complexity: Learning algorithm is O(|¢||A|{log |A|}?)

|¢| = no. of tests.

Run time O(log |A|). Very Rapid
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Notes: the design strategy is very greedy. There may be a shorter tree if you learn the
tree by searching over a sequence of tests.

The number of children (z) is arbitrary. You can extend the approach to having three,
or more, children.

There are alternative impurity measures.

(e.g. the Gini index)

I(1) = X1 iy Pul@i) Pulwj) = 1 = 32, P(y)

Expanding the tree until all nodes are pure risks overgeneralizing. It will give perfect
performance on the training dataset, but will usually cause error on the test dataset.

Better to stop splitting the data when the impurity reaches a positive threshold, it set
a node to be a leaf J(u) <

x(3 : threshold

Then at each leaf, classify data by majoring vote.

Cross Validation Strategy : learn the decision tree with different impurity thresholds S.

Select the tree, and hence the 3, which has best validation (consistency between training
& test data sets).
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7. SPECTRAL CLUSTERING

Spectral clustering is a technique for segmenting data into non-overlapping subsets. It is
used in many machine learning applications (e.g., von Luxberg 2007) and was introduced
into computer vision by Shi and Malik (2000).

The data is defined by a graph with an affinity, or similarity measure, between graph
nodes. The computation — to segment the data — can be performed by linear algebra
followed by thresholding. Note that affinities relates to kernels (those that fall off with
distance, like radial basis functions) used in machine learning. For some problems it is
easier to define affinities between objects directly instead of obtaining them by the more
standard method of specifying the objects by features and then calculating the distance
between the features.

Spectral clustering is an alternative to probabilistic methods for segmentation. The
main difference is that the probabilistic models define data at the nodes of the graph while
spectral clustering defines data at the edges between nodes. (There are ways to relate the
two approaches which will be discussed later).

For image segmentation a typical affinity between pixels ¢ and j is defined by w;; =
exp{—|l; — I;|} exp{—7|x; — x|} where I;,I; are the intensities at pixels 7,7 and x;, x;
are their spatial positions. Hence the affinity is high between neighboring pixels which
have similar intensity values (small z; — x; and small |I; — I;|) and the affinity is small
between pixels which are far apart (large x; — z;|) or which have very different intensity
values (large |I; — I;|). If this affinity is used, the spectral clustering will segment the data
into subregions within which the intensity values changes slowly with position.

References.

e U. von Luxburg, A tutorial on spectral clustering, Stat.Comput.,2007
e Shi and Malik, Normalized cuts and image segmentation, PAMI, 2000

8. Basic CONCEPTS

Let G = (V, E) be an undirected graph with nodes V' = vy, v9,...,v,. The graph has
weighted edges w;; = wj; > 0 which are called affinities and are measures of similarity
between nodes. Large w;; means strong affinities, or bonds, between node ¢ and node j.

The degree of a vertex v; is defined as: d; = 2?21 w;j. The degree matrix of the graph
is defined by D = diag{d;, da, ..., d, }.

For two subsets A, B (which do not need to be disjoint) of V', w(A, B) is defined by:

w(A,B) = ZiEA,jEB Wij
The size of a subset A C V' has two definitions.

|A| = number of vertices in A (unweighted volume)

vol(A) = Zdi (weighted volumn)
€A
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8.1. Examples of affinities.

(1)

0 otherwise.

1 if(i,j) el
wij:{ if (i,5) €

Shi and Malik’s definition of w;; is given by:

2 2
bl s

otherwise.

where r, 0,07 are parameters.

9. THE GRAPH LAPLACIAN MATRIX (REF. CHUNG, SPECTRAL GRAPH THEORY,
AMS-1997)

This section defines graph Laplacians on the graphs. In the special case where the
affinities w;; takes values {0, 1} then the connected components of the graph can be found
from the eigenvectors with zero eigenvalues. This enables us to segment the graph into its
connected components by linear algebra. If we allow the w;; to take continuous values, as
will happen for computer vision applications, then we can estimate a segmentation of the
data by using the eigenvectors of the Laplacian with sufficiently small eigenvalues. There
are several different Laplacians (normalized and unnormalized) which will give different
segmentations.

9.1. Unnormalized graph Laplacians. Given an undirected, weighted graph G = (V| E),
its Laplacian matrix is defined to be

(3) Li=D-W

where D = diag(d;) and W = (w;;)nxn with n = |V|. Note that L does not depend on wy;
(which cancels between D and W).

Why do we call this matrix the “Laplacian”? From Figure 2, we see that it is similar to
the standard discretization for the Laplacian differential operator —V?u = —(uzs + Uyy)
in the special case where w;; = 1 for nearest neighbor pixels and w;; = 0 otherwise:

Here are some useful properties of L which will be useful for spectral clustering:

(1) ffLf = %ZZj:l wij(fi — f;)?,Vf € R
(2) L is a symmetric positive semi-definite matrix (this follows from 1).
(3) The smallest eigenvalue is 0, the corresponding eigenvector is the vector ¥ =

(1,1,...,1).
(4) L has n non-negative eigenvalues. 0 = A; < Ag <+ < A < Ay < -+ < A
B)IO0=XA =X =" =X < Agy1 < --- <\, then G has k-connected compo-

nents Ay, ..., Ap (V = Ule A;). The eigenspace of eigenvalue 0 is spanned by the
indicator vectors ¥ 4,,...,# 4, of these components.
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FIGURE 2. A simple graph and its corresponding Laplacian

FI1GURE 3. A simple graph G with two connected components

Here is a simple example of Property 5. The graph G = (V, E) in Fig 3 has two connected
components, Ay and As. W = {w;;} of G is defined in Equation (6).

1 e;€FE
(4) wij:{ Ny

0 otherwise.

Let L = D — W and calculate the eigenvalues and eigenvectors of L. It follows that the
first two eigenvalues A1, A2 are 0, and the corresponding eigenvectors (u; and ug) correspond
to the connected components A; and As.

Al = {U17U27U3,U4,U5,U6}
Az = {vr, vs,v9, V10, V11, V12}
w = (1,1,1,1,1,1,0,0,0,0,0,0)
us = (0,0,0,0,0,0,1,1,1,1,1,1)
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Note that the eigenvalues are degenerate and so that eigenvectors will be of form cosfuy +
sinfug and sinfu; — cosBus where 0 is any value. An additional algorithm is needed to
find u; and us as described in the next section.

9.2. Normalized graph Laplacians. There are two matrices which are called normalized
graph Laplacians in the literature. Both matrices are closely related to each other and are
defined by:

(5) Lsym := D™Y2LD71/2 = T — D~Y2WD'/? (Ng, Jordan, Weiss, 2002)

(6) Lyw:=D'L=1-D"'W. (Shi, Malik, 2000)

The normalized Laplacian matrix satisfy the following properties:
(2) (\,u) is an eigenpair of Ly, if and only if (A, w = D¥/2u) is an eigenpair of L.
(3) (\,u) is an eigenpair of L, if and only if A and u solve the generalized eigen-

problem Lu = ADu.

(4) (0,)) is an eigenpair of Ly, and (0, D'/2) is an eigenpair of Lgypn,.
(5) Lgym and L,,, are positive semi-definite and have n non-negative eigenvalues 0 =
6) If0 =X = - =X < My1 < -+ < Ay, then G has k-connected components

A1, ..., Ag. And the eigenspace of eigenvalue A = 0 is spanned by the ¥ 4,,... ¥ 4,
for Ly, and DV 4., ..., DY 4, for Leym.

10. SPECTRAL CLUSTERING ALGORITHMS

Input: Affinity matrix S € R™*", and number of clusters to construct k.

(1) Compute the unnormalization Laplacian L = D — W.
(2) Compute the first k eigenvectors uq, ..., u; of L.
or Solve the general eigenvalue problem, i.e. Lu = ADu, to get uy, ..., uy (for Lyy).
or Compute the first k eigenvectors w1, ..., uy of Lgym = D*1/2LD*1/2(for Loym).
(3) Let

(7) U = [ug,...,up] € R™F
yi
Yn
that is, y; is the vector corresponding to the i-th row of U.
(4) Cluster the k-dimension points (y;)i=1,...» using e.g. k-means, into clusters C, ..., Cy.

Output: Clusters Ay, ..., Ay, with A; = {j|y; € C;}.

Main point: In the new representation y;, clustering is much easier. For example, suppose

n = 5 and there are two connected components — nodes 1, 2,3 and nodes 4,5. Then the

zero eigenvectors will be of form (cos#, cosf, cosf, sinf, sinf) and (—sinf, —sinf, —sinb, cosh, cosh),
where 6 is an angle (this is because we know the zero eigenvectors must lie in the subspace
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spanned by (1,1,1,0,0) and (0,0,0,1, 1), because of property 6 of the laplacian, and the
eigenvectors must be orthogonal). Then if we set k¥ = 2 we find that the clusters are
(cosh, —sinf) and (sind, cosd). Then the first three points are associated to the first clus-
ter (i.e. the first connected component) and the last two points are associated to the second
cluster (second connected component).




