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Abstract

8l We describe an approach for extracting facial features from
images and for determining the spatial organization between
these features using the concept of a deformable template. This
is a parameterized geometric model of the object to be rec-
ognized together with a measure of how well it fits the image

INTRODUCTION

The sophistication of the human visual system is often
taken for granted unti! we try to design artificial systerns
with similar capabilities. In particular humans have an
amazing ability to recognize faces seen from different
viewpoints, with various expressions and under a variety
of lighting conditions. It is hoped that current attempts
to build computer vision face recognition systems will
shed light on how humans perform this task and the
difficulties they overcome.

In this article we describe one promising approach
toward building a face recognition system. Some alter-
native approaches are reviewed in Turk and Pentland
(1989).

A standard way of describing a face consists of repre-
senting the features and the spatial relations between
them. Indeed two of the earliest face recognition systems
(Goldstein, Harmon, & Lesk, 1972; Kanade, 1977) used
features and spatial relations, respectively. Such repre-
sentations are independent of lighting conditions, may
be able to characterize different spatial expressions, and
have some limited viewpoint invariance.

These representations, however, are extremely difficult
to compute reliably from a photograph of a face. It is
very hard to extract features, such as the eyes, by using
current computer vision techniques. Deformable tem-
plates, however, offer a promising way of using a priori
knowledge about features, and the spatial relationships
between them, in the detection stage. Once the feature
has been extracted the parameters of the deformable
iemplate can be used for description and recognition.

Designing a deformable template to detect a feature,
or an object, falls into two parts: (1) providing a geo-
metric model for the template, and (2) specifying a
model, the éimaging model, for how a template of specific
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data. Variations in the parameters correspond to allowable de-
formations of the object and can be specified by a probabilis-
tic model. After the extraction stage the parameters of the
deformable template can be used for object description and
recognition. Il

geometry will appear in the image and a corresponding
measure of fitness, or matching criterion, to determine
how the template interacts with the image.

For many objects it is straightforward to specify a plau-
sible geometric model. Intuition is often a useful guide
and one can draw on the experience of artists (for ex-
ample, Bridgman, 1973). Once the form of the model is
specified it can be evaluated and the probability distri-
bution of the parameters determined by statistical tests,
given enough instances of the object.

Specifying the imaging model and the matching cri-
terion is often considerably harder. The way the object
reflects light depends both on the reflectance function
of the object, which in principle can be modeled, and
on the scene illumination, which is usually unknown.
The matching criterion, however, should aim to be rel-
atively independent of the lighting conditions. An even
more serious problem arises when part of the object is
invisible, perhaps due to occlusion by another object or
by lying in deep shadow. Most matching criteria will
break down in this situation but recent work, described
in the fourth section, shows promise of dealing with such
problems.

The plan of this chapter is as follows. The second
section gives a simple introduction to deformable tem-
plates by describing the pioneering work of Fischler and
Elschlager (1973) on extracting global descriptions of
faces. The third section gives a more detailed description
of using deformable templates to extract facial features
(Yuille, Cohen, Hallinan, 1989). The fourth section shows
a way to put deformable templates in a more robust
framework (Hallinan & Mumford, 1990), which promises
to make them more reliable and effective.

Deformable templates, and the closely related elastic
models (Burr, 1981a,b; Durbin & Willshaw, 1987; Durbin,
Szeliski, & Yuille, 1989) and snakes (Kass, Witkin, &
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Terzopolous, 1987; Terzopolous, Witkin, & Kass, 1987),
have been extensively used in recent years in vision and
related areas. Much of this work fits into the general
Bayesian statistical framework developed by Grenander
and his collaborators (Chow, Grenander, & Keenan, 1989;
Grenander, 1989; Knoerr, 1989) for synthesizing and rec-
ognizing biological shapes.

GLOBAL TEMPLATES

In Fischler and Elschlager’s approach (1973) the face is
modeled by a set of basic features connected by springs
(see Fig. 1). The set of features includes the eyes, hair,
mouth, nose, and left and right edges. The individual
features do not deform and each feature has a local
measure of fit to the image. During the matching stage
the entire structure is deformed, rather like a rubber
sheet, until all features have a good local fit and the
spring forces are balanced. The springs help ensure that
the spatial relations between the features are reasonable
(i.e., the nose is not above the hair).

More specifically, this approach defines a local fitness
measure /{x;) that indicates how strongly the ith feature
fits at location x;. Fischler and Elschlager define simple
fitness measures for each feature. For example, for the
left edge of the face the fitness measure at x; is the
difference between the sums of the four intensity values
to the left and right of x;. Thus this measure is large for
a straight vertical line with low intensity on the left and
high intensity on the right.

The spring joining the ith and jth features are given a
cost function gi(x;, x;), where x; and x; are the positions
of the features. In most cases gy is assumed to be sym-
metric and to depend only on the relative positions of
the features, hence it can be written as gi/{x; — x;). Not
all features are joined by springs (see Fig. 1), so for each
feature i we let N; denote the set of features to which it
is connected.

Figure 1. The face model consists of the hair, eyes, nose, mouth,
and the left and right edges joined together by springs.
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The total measure of fitness is the sum of the local
fitness measures for each feature and the cost of the
spring terms. Let X5 = {x1, X2, . . . , x-} be the positions
of the features. The fitness is

7 7
EX7) = 2 lx) + 2 {2 i — x;)} (D
i=1 i=1 Ljen;

The theory suggests localizing the features in a specific
face by adjusting X7 to maximize E(X-). This is a hard
combinatoric problem and Fischler and Elschlager sug-
gest an algorithm, the linear embedding algorithm, to
solve it. We will not, however, be concerned here with
the details of the algorithm, which are related to dynamic
programiming.

The system was shown to work on a number of 35 by
40 images. The authors reported that the main errors
occurred in the location of the mouth/nose complex,
although the other features were correctly located. In
these situations the spring forces put the mouth/nose
complex in roughly the right position but were unable
to localize it correctly. They also mentioned that in the
presence of noise the simple local fitness measures
seemed inadequate to accurately locate the nose and
mouth.

Computer simulations at the Harvard Robotics Lab (U.
Wehmeier, personal communication) show that closely
related techniques work well for images of faces with
constant size and with little noise. In these simulations
five features were chosen: (1) the eyes, (2) the nostrils
of the nose, and (3) the sides of the mouth. These fea-
tures were attracted to valleys, dark blobs, in the image
intensity and were connected by springs. A steepest
descent algorithm was used (see Fig. 2). Once the posi-
tions of the features were located approximately, then
more accurate detectors can be used to find them more
precisely.

Fischler and Elschlager’s approach is very attractive
but it has several weaknesses in its present form. The
main problem is the simplicity of the local fitness mea-
sures. At present they are strongly scale dependent and
may fail under certain noise conditions. The spring forces
might also be improved, by a systematic study of the
spatial relations, to make sure they give a more accurate
bias.

Systems of this type seem to work best on small pic-
tures with coarse levels of resolution. At coarse scales
the local fitness measures may be very simple (Wehmeier
was able to locate many features in terms of valleys). At
finer scales, however, the local fithess measures must
become more complex to take into account the greater
variability of the feature. This suggests a coarse to fine,
or pyramidal (Burt & Adelson, 1983), approach in which
a global template is used to identify likely positions in
the coarse image that can be located and (we hope)
verified by more sophisticated techniques at a finer scale.

We will now describe a system that uses deformable
templates to locate the features themselves.
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Figure 2. A time sequence showing how the estimated positions of the five features, represented by black dots, evolve as they are attracted to
valleys in the intensity under the influence of the springs, represented by thick lines. For reasons of clarity this evolution is shown on an edge
image of the face, rather than on the face itself. The dots locate the features approximately and specify regions of interest within which more
sophisticated detectors can locate the features more accurately. Figure courtesy of U. Wehmeier.
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FEATURE TEMPLATES FOR FACIAL
FEATURE EXTRACTION

The ability to detect and describe salient features is an
important component of a face recognition system. Such
features include the eyes, nose, mouth, and eyebrows.
This task is hard and current edge detectors seem unable
to reliably find features such as the boundary of the eye.
The problem seems to be that, although it is often
straightforward to find local evidence for edges, it is hard
to organize this local information into a sensible global
percept.

In the deformable template approach the templates
are specified by a set of parameters that enables a priori
knowledge about the expected shape of the features to
guide the detection process. The templates are flexible
enough to be able to change their size, and other param-
eter values, so as to match themselves to the data. The
final values of these parameters can be used to describe
the features. The method should work despite variations
in scale, tilt and rotation of head, and lighting conditions.
Variations of the parameters should allow the template
to fit any normal instance of the feature.

The deformable templates interact with the image in
a dynamic manner. An energy function is defined that
gives a measure of fit of the template to the image.
Minimizing the energy attracts the template to salient
features, such as peaks, valleys, and edges in the image
intensity. The minimum of the energy function corre-
sponds to the best (local) fit with the image. The template
is given some initial parameters-that are then updated
by steepest descent. This corresponds to following a path
in parameter space, and contrasts with traditional meth-
ods of template matching that would involve sampling
the parameter space to find the best match (and whose
computational cost increases exponentially with the di-
mension of the parameter space). Changing these param-
eters corresponds to altering the position, orientation,
size, and other properties of the template. The initial
values of the parameters, which may be very different
from the final values, are determined by preprocessing.
If, for example, we have input from a global face template
(as described in the previous section) then we could use
this input to determine likely initial values.

The template is designed to act on representations of
the image, as well as on the image itself. These repre-
sentations are based on fields, which highlight valleys,
peaks, and edges, and enable the template to match when
its initial parameter values are very different from the
correct ones. The final fitness measure, however, is
mostly independent of these representations.

Representations of the Image

We preprocess the image to obtain fields, Py(x), Pe(x),
and P,(x), (representing valleys, edges, and peaks) on
which the deformable template will act. These fields are
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intended to take their largest values at valleys, edges, and
peaks. They are calculated in two different ways.

For final precision, and to minimize the dependence
on prior assumptions, the fields are defined directly in
terms of the intensity,

D (x) = —1(x), ®(x) = VIx)VI(x),
D(x) = I(x) (2)

These fields clearly take their largest values at low
intensity, edges and peaks, respectively. They can be used
to help detect valleys, edges, and peaks. It is hard, how-
ever, to get long range interactions over the image. These
are easier to obtain if we first perform operations to
produce representations in which the valleys, and other
features, are highlighted.

These representations are chosen to extract properties
of the image, such as peaks and valleys in the image
intensity and places where the image intensity changes
quickly (an additional representation could be added to
describe textural properties). These representations do
not have to be very precise, and they can be calculated
fairly simply. Our present methods involve using mor-
phological filters (Maragos, 1987; Serra, 1982) to extract
these features. The fields are smoothed to ensure long
range interactions; for details see Yuille et al. (1988).

In the following we will use ®y(x), Pe(x), and Py(x)
to represent both types of fields and will specify in the
text whether they are intensity fields, calculated by (2),
or representation fields.

The Eye Template

After some experimentation and informal psychophysics
on the salience of different features of eyes we decided
that the template should consist of the following features:

1. A circle of radius r, centered on a point x.. This
corresponds to the boundary between the iris and the
whites of the eye and is attracted to edges in the image
intensity. The interior of the circle is attracted to valleys,
or low values, in the image intensity.

2. A bounding contour of the eye attracted to edges.
This contour is modeled by two parabolic sections rep-
resenting the upper and lower parts of the boundary.
It has a center x., width 2b, maximum height a of
the boundary above the center, maximum height ¢ of
the boundary below the center, and an angle of orien-
tation 0.

3. Two points, corresponding to the centers of the
whites of the eyes, which are attracted to peaks in the
image intensity. These points are labeled by x. + pi(cos
0, sin 8) and x. + p2(cos 0, sin 8), where p; = 0 and
D2 = 0. The point x. lies at the center of the eye and 0
corresponds to the orientation of the eye.

4. The regions between the bounding contour and the
iris also correspond to the whites of the eyes. They will
be attracted to large values in the image intensity.
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These components are linked together by three types
of forces: (1) forces that encourage x. and x. to be close
together, (2) forces that make the width 24 of the eye
roughly four times the radius » of the iris, and (3) forces
that encourage the centers of the whites of the eyes to
be roughly midway from the center of the eye to the
boundary.

The template is illustrated in Figure 3. It has a total of
9 parameters: X, Xe, p1, P2, 1, a, b, ¢, and 8. All of these
are allowed to vary during the matching.

To give the explicit representation for the boundary
we first define two unit vectors

e; = (cos 9, sin 0), e; = (—sin §, cos 0) (3)

which change as the orientation of the eye changes. A
point x in space can be represented by (x,,x2) where

X = x1€; + xz€:. (4)

Using these coordinates the top half of the boundary
can be represented by a section of a parabola with
x1€[—bb]

a
x;=a- ?xf (5)
Note that the maximal height, x,, of the parabola is a

and the height is zero at x, = *b. Similarly the lower
half of the boundary is given by

X, = —c+ ECEX% ) (6)

where x,€[—bp].

The Energy Function for the Eye Template

We now define a potential energy function for the image
that will be minimized as a function of the parameters
of the template. This energy function not only ensures
that the algorithm will converge, by acting as a Lyaponov

" function, but also gives a measure of the goodness of fit

of the template. More robust energy functions are de-
scribed in section four.

The complete energy function E«(Xe, Xc, p1,p2,a,.0,61,0)
is given as a combination of terms due to valley, edge,
peak, image, and internal potentials. More precisely,

E.=E, + Ee + Ei + Ep + Einternal @)
where

1. The intensity/representation valley potentials are
given by the integral of the intensity/representation fields
aver the interior of the circle divided by the area of the
circle,

— Cl
EV B Areﬂ f j(;ircle—Area QV(X) dA (8)

2. The intensity/representation edge potentials are
given by the integrals of the intensity/representation edge
fields over the boundaries of the circle divided by its
length and over the parabolas divided by their lengths,

C2

E.= — D (x) ds
Leﬂgl'b Circle-Bound ( )

C3
Lengl‘b Para-Bound

b.(x) ds 9

AN
A4
N

W

Figure 3. The eye template.

Yuille 63



3. The intensity peak potentials attempt to maximize
the intensity peak field, ®,(x), between the circle and
the parabolas, again divided by the area,

Cs

Ep -7 Area J' J’\X/hiles q)p(X) da

4. The representation peak potentials are the repre-
sentation peak field evaluated at the two peak points and
are given by

(10)

Ep = cf®(xe + prey) + P(xe + pre)} (1)
5. The internal potentials are given by
Ry 2 R 1
Einterpal = = . — X —= _ = 2
1= e =X (o Sk B
k2 1 > ks 2
E(Pz+§{r+b}) +?(b—27'), (12)

The {c¢i} and {k} are usually fixed coefficients but we
will allow them to change values (corresponding to dif-
ferent epochs) as the process proceeds. Changing the
values of these coefficients enables us to use a matching
strategy in which different parts of the template guide
the matching at different stages. For example, the valley
in the image intensity corresponding to the iris is very
salient and is more effective at “attracting” the template
from long distances than any other feature. Thus its
strength, which is proportional to ¢, should initially be
large. Orienting the template correctly is usually best
performed by the peak terms, thus ¢ should be large in
the middle period. The constants ¢, and c3 can then be
increased to help find the edges. Finally, the terms in-
volving the image intensity can be used to make fine
scale corrections and determine the final measure of fit.
This corresponds to a strategy in which the position of
the eye is mainly found by the valley force, the orienta-
tion by the peak force, and the fine scale detail by the
edge and intensity forces. In this scenario the values of
the ¢s will be changed dynamically. Typical values for
the coefficients are

(€1,62,C3,C4,C5,C6) = (4000,50,50,125,150,50)

and

(k1 k2ks) =~ (10,1,0.05).

The individual energy terms can be written as func-
tions of the parameter values. For example, the sum over
the boundary can be expressed as an integral function
of xe, a, b, ¢, and 8 by

f . D (x) ds
Para—Bound

o 20, =b

- Length Jx,=—»

Do(xe + x1€1 + {a - %xf}ez)ds
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Cs X, =bh

+
Length Jx,=—-s

(I>e<xc + x.€, — {c - %xﬁ}ez) ds
(13)

where s corresponds to the arc length of the curve and
Length 10 its total length. Note that scale independence
is achieved by dividing line integrals by their total length
and double integrals (over regions) by their area.

The minimization is done by steepest descent of the
energy function in parameter space. It is assumed that
preprocessing, or interactions between different tem-
plates (see section two), will allow the eye-template to
start relatively near the correct position. Alternatively the
eye template might locate several promising positions,
probably at valleys in the intensity, and investigate them.

Thus the update rule for a parameter, for example r,
is given by

dr _ % (14)
dt ar

These terms are explicitly calculated in Yuille et al
(1988).

Simulation Results for Eyes

The theory was tested on real images using a SUN4
computer. The valleys, peaks, and edges are first ex-
tracted and smoothed (see Fig. 4). The template is then
given initial parameter values, positioned in the image
and allowed to deform itself using the update equations.

Some initial experimentation was needed to find good
values for the coefficients and a number of problems
arose. For example, the intensity and valley terms over
the circle attempt to find the maximum value of the
potential terms averaged inside the circle. This led to
the circle shrinking to a point at the darkest part of the
iris. This effect was countered by strengthening the edge
terms, which pull the circle out to the edge between the
iris and the whites of the eye. Another problem arose
because the iris might also be partially hidden by the
boundary of the eye, thus the part of the circle outside
the boundary cannot be allowed to interact with the
image. This can be dealt with by considering only the
area of the circle inside the bounding parabolas.

The system worked well after good values were found
for the coefficients. The templates usually converged to
the eye provided they were started at or below it. The
valleys from the eyebrows caused problems if the tem-
plate was started above the eye.

The values of the coefficients changed automatically
during the course of the program to define six distinct
epochs:

1. The coefficients of the valley forces are strong and
the force is calculated using the representation fields.
The coefficients of the peak and edge forces are zero.
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Figure 4. The valley, edge, and peak representations for the eye region.

During this epoch the valley forces pull the template to
the eye.

2. The valley forces are calculated using the intensity
field, with the peak and valley fields still zero. This helps
scale the circle to the correct size of the iris.

3. The edge coefficients for the boundary of the circle
increase. This fine tunes the size of the circle as it locks
onto the iris.

4. The peak coefficients increase. This enables the
peak forces, using the representation field, to rotate the
template and get the correct orientation.

5. The peak forces are calculated with the intensity
field. This helps adjust the size of the outer boundary of
the template.

6. The coefficients of the edges of the boundary

are increased. This fine tunes the positions of the
boundaries.

The program changes epoch automatically when it has
reached a steady state of the energy function with the
appropriate coefficient values (i.e., when it thinks it has
accomplished its goals for that epoch).

Figure 5 illustrates the program running in the differ-
ent epochs. Note that the template can start some dis-
tance away from the eye, can scale the iris, rotate the
eye, and lock onto the edges. The runtime for the pro-
gram is between 5 and 10 min on a SUN4.

Note that in the above scenario the representation
fields are used for long range attraction and the intensity
fields do the fine scale tuning. If the initial guess for the
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Figure 5. A dynamic se-
quence for the eve left to right
and top to bottom. The first
frame shows the initial config-
uration and the remaining
frames show the results at the
ends of the epochs.

location and size is accurate then the representation
fields are unneccessary.

Summary of Feature Templates

Yuille et al. (1988) describes how this work can be ex-
tended to detect mouths. We define a parameterized
template for the mouth and allow it to adjust itself to the
image (see Fig. 6).

it seems relatively straightforward to find templates for
the other “internal” features of the face, such as eye-
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brows, noses, chins, and moustaches. There has also
been some promising initial work on extracting fore-
heads (P. Maragos, private communication). It is less
clear how to generalize this idea to find “external” fea-
tures such as the ears or hair. Possibly features of this
type are best found at a coarser level.

The approach can be directly adapted to many other
recognition problems. For example, Lipson, Yuille,
O’Keefe, Cavanaugh, Taaffe, and Rosenthal (1990) de-
scribe a successful system for extracting trabecular bones
from medical images.
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Figure 6. A dynamic sequence for the mouth template on an open and a closed mouth. In the upper picture the template is pulled in by the
peak and edge forces from the teeth. In the lower picture the template is mainly pulled in by the vallev forces and the region for the teeth

vanishes.

In the experiments described above the initial values
for the templates were selected by hand and were often
chosen to make the task hard. For an automated system
there are two extreme strategies. The first approach
would be to run global face templates (see the second
section) to determine likely positions for the features,
which could then be checked using deformable feature
templates. The second strategy, which is purely local,
would be to use the representation fields to determine
possible likely candidates. For example, the eye template
might start at places where the valley representation was
strong, thereby eliminating the need for the first epoch
and enabling the template to act directly on the image
intensity. Since there will probably be several candidates
we would need to start several deformable templates off
in parallel and see which gives the best results. This
would require some criteria for selecting the best fit. A
natural choice would be the one with the lowest final
energy function. This, however, might need to be sup-
plemented by taking into account the spatial relation-
ships to other features and the a priori probability of the
final parameter values. In some special cases it may be
possible for the energy to be low but for the parameter
values to be extremely unlikely. Such a situation can
occur if the mouth template gets started on the eye and
becomes grotesquely deformed (Yuille et al.,, 1988) (see
Fig. 7).

Deformable feature templates give a promising ap-
proach to extracting features. A problem with the ap-
proach is the difficulty of extracting the representation
fields automatically since the fields, in particular the peak
fields, are sensitive to the scale of the morphological
operators. This does not matter for the final measure of
fit, which is based almost entirely on the intensity fields,

but it would affect the matching strategy (the epochs).
In the next section we describe a reformulation of de-
formable templates that makes them more robust and
reliable.

ROBUST FEATURE TEMPLATES

The templates described in the previous section were
designed on a somewhat ad hoc basis. There was a
measure of fit, the energy function, but no explicit im-
aging model. There are also several situations for which
the templates may fail, for example, if the mouth is
smoking a cigarette. In this section we discuss current
research, which attempts to put the templates in a more
theoretical setting and make them more robust (Hallinan
& Mumford, 1990). We will concentrate chiefly on the
imaging model for the template and its measure of fit,
with less emphasis on how the matching is done to
minimize this measure.

This work draws on ideas developed in Robust Statis-
tics (Huber, 1981; Rousseecuw, 1987; for other applica-
tions to vision see Pavlidis, 1986; McKendall & Mintz,
1989). To motivate these ideas consider the problem of
estimating the mean from a set of samples {x;}, i =

1,. .., N. The sample mean is defined to be
N
x=(UN) X x; (15)
i=1

and minimizes the least squares error
N
E(x)= 2 (x —x)° (16)
=1

The sample mean, however, is extremely sensitive to
outliers. By introducing a new point xy+; a sufficiently
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Figure 7. A grotesquely de-
formed template. See text.

long way away from the other points we can alter the
value of the sample mean by an arbitrarily large amount.
A robust technique for estimating the mean should be
relatively independent of such outliers and should also
enable us to identify the outliers themselves.

There are several possible robust techniques. Perhaps
the most simple is least trimmed squares. For each value
of x we order the residuals ¥; = (x — x;)° 50 that ry <
rey = .. .. We now minimize the least trimmed squares
(LTS)

M
Eirs(x) = 21 Fin a7)
=
where M is an integer less than N giving the proportion
of points that we wish to match. If M = aV then this is
the least a-trimmed squares estimator, closely related to
the a-trimmed mean estimator. M may be altered adap-
tively.

Thus minimizing Firs(x) with respect to x gives us the
estimate of the mean for the best M points. We can
simultaneously get an estimate of the variance of the
residuals of these points. The remaining N — M points
are treated as outliers if their residuals are significantly
larger than the variance.

This example demonstrates two important aspects of
Robust Statistics: (1) finding an estimate of a quantity by
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discarding, or reducing the influence of, some of the
data, and (2) analyzing the residuals of the discarded
data.

Hallinan and Mumford propose adapting these tech-
niques to produce a Robust Deformable Template. To
illustrate these ideas we consider their reformulation of
the eye template.

Their model of the ideal eye has essentially the same
geometry as the old eye template (see the third section).
In their ideal imaging model the iris and the whites of
the eyes are both assumed to have constant image inten-
sity. This can be distorted by the addition of noise and
by the overlay of occluding objects (see Fig. 8). Note that
for blue eyes the iris and pupil have different intensity
and a more complex model is needed. The use of robust
matching criteria means that the system is not very sen-
sitive to the precise form of the imaging model.

The measures of fit aim to find the parameters of the
template that minimize the mean in the iris region, max-
imize the mean for the whites of the eyes, and maximize
the mean edge strength at the boundaries. This is some-
what similar to the measure used by the eye template in
the third section for the fine scale matching when the
representation fields are not used. The difference lies in
the use of an underlying imaging model, robust methods
for calculating the means, residual analysis, and the use
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Figure 8. (a) The ideal eye has constant low intensity in the iris
and constant high intensity in the whites. (b) The ideal eye with
noise superimposed. (¢) The ideal eye with an occluding bar.

of the variance to determine the degree of flatness of the
regions. The goodness of fit can be defined in a dimen-
sionless, parameter-free way as the percentage of vari-
ance accounted for by the imaging model in a fixed
proportion (1 — a) of the pixels.

The use of robust techniques, in particular the o-
trimmed mean, enable the means to be estimated cor-
rectly and the template matched even when a significant
part of the eye is occluded (see Fig. 8c). Intuitively the
measures reward good partial matches more than they
penalize poor partial matches. Hallinan and Mumford
also suggest that residual analysis could be applied so
that matches could be strengthened if the discarded data
could be interpreted as an occluding object. Thus the
image intensity within the portion of the bar in Figure
8c, which overlaps with the eye might be identified as
outliers. Further analysis could show that these outliers
form a coherent structure, the bar, occluding the eye.

The chief advantage of this approach is that it specifies
a precise imaging model, allowing for gross distortions
such as the occluding bar, and designs the fitness mea-
sure accordingly. It is hence possible to say precisely for
which class of stimuli the method will work. Of course
it is necessary to do experiments to test how accurate
the imaging models are.

CONCLUSION

Deformable templates offer a promising and concep-
tually attractive way for locating features, and sets of
features with given spatial relations, by exploiting prior
knowledge. The parameters of the templates can then be
used to describe and recognize faces.

The methods described here are consistent with two
extreme strategies for face description. In the bottom up
strategy individual features are located before their spa-
tial relations are determined. In the top down approach
the spatial relations are used to guide the location of
individual features.

The templates we have described are essentially “self-
ish.” They try to grab the parts of the image that they can
explain and ignore the rest. One can contrast this with
the more Bayesian approach used by Chow et al. (1989),
which attempts to extract the outline of a hand by assum-
ing that the hand and the background have constant,
though unknown, image intensities with superimposed
gaussian noise. This approach attempts to explain the
whole image and requires knowledge of the background
as well as knowledge of the object being detected. In
cases where knowledge of the background is unavailable
the selfish template approach may be preferable.

Selfish templates alone, however, might not be suffi-
cient for giving a good image interpretation. Instead they
might need to be supplemented by “altruistic” templates
that attempt to explain the whole image. Although selfish
templates try to match from the template to the image
the altruistic templates try to match from the image to
the templates. Thus some of the altruistic templates may
be only partially matched. The use of residual analysis
might provide a link between these two template types.
The altruistic templates might try to explain the parts of
the image unexplained by the selfish templates.

The measures based on Robust Statistics enable the
template to be matched even when part of it is occluded.
Residual analysis may be able to isolate the occluder and
describe it separately. By refining the imaging models
and the robust measures of fit we expect to be able to
reliably extract features from images of faces under a
large variety of lighting conditions.

Deformable templates were invented as a technique
for doing computer vision and were not primarily mo-
tivated by considerations from psychological and neu-
roscientific experiments. Nevertheless there are some
intriguing connections to such experiments, which we
are currently investigating. The deformable templates
themselves have some similarities to mental images
(Kosslyn, 1980). In a slightly different vein they would
suggest an initial representation of a face somewhat sim-
ilar to a caricature though with more information. This
representation, the description generated by the local
and global deformable templates, would include peaks
and valleys, in addition to edges, and the spatial relations
between features. It is interesting that, though it is usually
harder to recognize someone from a caricature than
from a photograph, using caricatures can speed up re-
action time for very familiar faces (Rhodes, Brennan, &
Carey, 1987). The global face models might be related to
the results of Haig (1984) on the sensitivity of observers
to the spatial relations between features.
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