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Abstract 

We describe an approach for extracting facial features from 
images and for determining the spatial organization between 
these features using the concept of a deformable template. This 
is a parameterized geometric model of the object to be rec- 
ognized together with a measure of how well it fits the image 

LNTRODUCTION 

The sophistication of the human visual system is often 
taken for granted until we try to design artificial systems 
with similar capabilities. In particular humans have an 
amazing ability to recognize faces seen from different 
viewpoints, with various expressions and under a variety 
of lighting conditions. It is hoped that current attempts 
to build computer vision face recognition systems will 
shed light on how humans perform this task and the 
difficulties they overcome. 

In this article we describe one promising approach 
toward building a face recognition system. Some alter- 
native approaches are reviewed in Turk and Pentland 
(1989). 

A standard way of describing a face consists of repre- 
senting the features and the spatial relations between 
them. Indeed two of the earliest face recognition systems 
(Goldstein, Harmon, & Lesk, 1972; Kanade, 1977) used 
features and spatial relations, respectively. Such repre- 
sentations are independent of lighting conditions, may 
be able to characterize different spatial expressions, and 
have some limited viewpoint invariance. 

These representations, however, are extremely difficult 
to compute reliably from a photograph of a face. It is 
very hard to extract features, such as the eyes, by using 
current computer vision techniques. Deformable tem- 
plates, however, offer a promising way of using a priori 
knowledge about features, and the spatial relationships 
between them, in the detection stage. Once the feature 
has been extracted the parameters of the deformable 
template can be used for description and recognition. 

Designing a deformable template to detect a feature, 
or an object, falls into two parts: (1) providing a geo- 
metric model for the template, and (2) specifying a 
model, the imaging model, for how a template of specific 
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data. Variations in the parameters correspond to allowable de- 
formations of the object and can be specified by a probabilis- 
tic model. After the extraction stage the parameters of the 
deformable template can be used for object description and 
recognition. 

geometry will appear in the image and a corresponding 
measure of fitness, or matching criterion, to determine 
how the template interacts with the image. 

For many objects it is straightforward to specify a plau- 
sible geometric model. Intuition is often a useful guide 
and one can draw on the experience of artists (for ex- 
ample, Bridgman, 1973). Once the form of the model is 
specified it can be evaluated and the probability distri- 
bution of the parameters determined by statistical tests, 
given enough instances of the object. 

Specifying the imaging model and the matching cri- 
terion is often considerably harder. The way the object 
reflects light depends both on the reflectance function 
of the object, which in principle can be modeled, and 
on the scene illumination, which is usually unknown. 
The matching criterion, however, should aim to be rel- 
atively independent of the lighting conditions. An even 
more serious problem arises when part of the object is 
invisible, perhaps due to occlusion by another object or 
by lying in deep shadow. Most matching criteria will 
break down in this situation but recent work, described 
in the fourth section, shows promise of dealing with such 
problems. 

The plan of this chapter is as follows. The second 
section gives a simple introduction to deformable tem- 
plates by describing the pioneering work of Fischler and 
Elschlager (1973) on extracting global descriptions of 
faces. The third section gives a more detailed description 
of using deformable templates to extract facial features 
(Yuille, Cohen, Hallinan, 1989). The fourth section shows 
a way to put deformable templates in a more robust 
framework (Hallinan & Mumford, 1990), which promises 
to make them more reliable and effective. 

Deformable templates, and the closely related elastic 
models (Burr, 1981a,b; Durbin & Willshaw, 1987; Durbin, 
Szeliski, & Yuille, 1989) and snakes (Kass, Witlun, & 
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Terzopolous, 1987; Terzopolous, Witkin, & Kass, 1987), 
have been extensively used in recent years in vision and 
related areas, Much of this work fits into the general 
Bayesian statistical framework developed by Grenander 
and his collaborators (Chow, Grenander, & Keenan, 1989; 
Grenander, 1989; Knoerr, 1989) for synthesizing and rec- 
ognizing biological shapes. 

GLOBAL TEMPLATES 

In Fischler and Elschlager’s approach (1973) the face is 
modeled by a set of basic features connected by springs 
(see Fig. 1). The set of features includes the eyes, hair, 
mouth, nose, and left and right edges. The individual 
features do not deform and each feature has a local 
measure of fit to the image. During the matching stage 
the entire structure is deformed, rather like a rubber 
sheet, until all features have a good local fit and the 
spring forces are balanced. The springs help ensure that 
the spatial relations between the features are reasonable 
(i.e., the nose is not above the hair). 

More specifically, this approach defines a local fitness 
measure Zi(xz) that indicates how strongly the zth feature 
fits at location xi. Fischler and Elschlager define simple 
fitness measures for each feature. For example, for the 
left edge of the face the fitness measure at xj is the 
difference between the sums of the four intensity values 
to the left and right of x,. Thus this measure is large for 
a straight vertical line with low intensity on the left and 
high intensity on the right. 

The spring joining the ith andjth features are given a 
cost function g&, q), where xi and q are the positions 
of the features. In most cases gq is assumed to be sym- 
metric and to depend only on the relative positions of 
the features, hence it can be written as g,(x, - 3). Not 
all features are joined by springs (see Fig. l), so for each 
feature i we let N, denote the set of features to which it 
is connected 

< I 

- \  / 

Figure 1. The Eace model consists of the hair, eyes, nose, mouth, 
and the left and right edges joined together by springs. 

The total measure of fitness is the sum of the local 
fitness measures for each feature and the cost of the 
spring terms. Let X7 = {xl, x2, . . . , x7} be the positions 
of the features. The fitness is 
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The theory suggests localizing the features in a specific 
face by adjusting X7 to maximize E(X,). This is a hard 
combinatoric problem and Fischler and Elschlager sug- 
gest an algorithm, the linear embedding algorithm, to 
solve it. We will not, however, be concerned here with 
the details of the algorithm, which are related to dynamic 
programming. 

The system was shown to work on a number of 35 by 
40 images. The authors reported that the main errors 
occurred in the location of the mouthhose complex, 
although the other features were correctly located. In 
these situations the spring forces put the mouthhose 
complex in roughly the right position but were unable 
to localize it correctly. They also mentioned that in the 
presence of noise the simple local fitness measures 
seemed inadequate to accurately locate the nose and 
mouth. 

Computer simulations at the EIarvard Robotics Lab (U. 
Wehmeier, personal communication) show that closely 
related techniques work well for images of faces with 
constant size and with little noise. In these simulations 
five features were chosen: (1) the eyes, ( 2 )  the nostrils 
of the nose, and (3) the sides of the mouth. These fea- 
tures were attracted to valleys, dark blobs, in the image 
intensity and were connected by springs. A steepest 
descent algorithm was used (see Fig. 2) .  Once the posi- 
tions of the features were located approximately, then 
more accurate detectors can be used to find them more 
precisely. 

Fischler and Elschlager’s approach is very attractive 
but it has several weaknesses in its present form. The 
main problem is the simplicity of the local fitness mea- 
sures. At present they are strongly scale dependent and 
may fail under certain noise conditions. The spring forces 
might also be improved, by a systematic study of the 
spatial relations, to make sure they give a more accurate 
bias. 

Systems of this type seem to work best on small pic- 
tures with coarse levels of resolution. At coarse scales 
the local fitness measures may be very simple (Wehmeier 
was able to locate many features in terms of valleys). At 
finer scales, however, the local fitness measures must 
become more complex to take into account the greater 
variability of the feature. This suggests a coarse to fine, 
or pyramidal (Burt & Adelson, 1983), approach in which 
a global template is used to identify likely positions in 
the coarse image that can be located and (we hope) 
verified by more sophisticated techniques at a finer scale. 

We will now describe a system that uses deformable 
templates to locate the features themselves. 
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Figure 2. A time sequence showing how the estimated positions of the five features, represented by black dots, evolve as they are attracted to 
valleys in the intensity under the influence of the springs, represented by thick lines. For reasons of clarity this evolution is shown on an edge 
image of the face, rather than on the face itself. The dots locate the features approximately and specify regions of interest within which more 
sophisticated detectors can locate the features more accurately. Figure courtesy of U. Wehmeier. 
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FEATURE TEMPLATES FOR FACIAL 
FEATURE EXTRACTION 

The ability to detect and describe salient features is an 
important component of a face recognition system. Such 
features include the eyes, nose, mouth, and eyebrows. 
This task is hard and current edge detectors seem unable 
to reliably find features such as the boundary of the eye. 
The problem seems to be that, although it is often 
straightforward to find local evidence for edges, it is hard 
to organize this local information into a sensible global 
percept. 

In the deformable template approach the templates 
are specified by a set of parameters that enables a priori 
knowledge about the expected shape of the features to 
guide the detection process. The templates are flexible 
enough to be able to change their size, and other param- 
eter values, so as to match themselves to the data. The 
final values of these parameters can be used to describe 
the features. The method should work despite variations 
in scale, tilt and rotation of head, and lighting conditions. 
Variations of the parameters should allow the template 
to fit any normal instance of the feature. 

The deformable templates interact with the image in 
a dynamic manner. An energy function is defined that 
gives a measure of fit of the template to the image. 
Minimizing the energy attracts the template to salient 
features, such as peaks, valleys, and edges in the image 
intensity. The minimum of the energy function corre- 
sponds to the best (local) fit with the image. The template 
is given some initial parameters- that are then updated 
by steepest descent. This corresponds to following a path 
in parameter space, and contrasts with traditional meth- 
ods of template matching that would involve sampling 
the parameter space to find the best match (and whose 
computational cost increases exponentially with the di- 
mension of the parameter space). Changing these param- 
eters corresponds to altering the position, orientation, 
size, and other properties of the template. The initial 
values of the parameters, which may be very different 
from the final values, are determined by preprocessing. 
If, for example, we have input from a global face template 
(as described in the previous section) then we could use 
this input to determine likely initial values. 

The template is designed to act on representations of 
the image, as well as on the image itself. These repre- 
sentations are based on fields, which highlight valleys, 
peaks, and edges, and enable the template to match when 
its initial parameter values are very different from the 
correct ones. The final fitness measure, however, is 
mostly independent of these representations. 

Representations of the Image 

We preprocess the image to obtain fields, QV(x), Qe(x), 
and QP(x), (representing valleys, edges, and peaks) on 
which the deformable template will act. These fields are 

intended to take their largest values at valleys, edges, and 
peaks. They are calculated in two different ways. 

For final precision, and to minimize the dependence 
on prior assumptions, the fields are defined directly in 
terms of the intensity, 

Q"(X) = -I(x), @,,(x) = VZ(x).VI(x), 
@ P W  = I(x) (2) 

These fields clearly take their largest values at low 
intensity, edges and peaks, respectively. They can be used 
to help detect valleys, edges, and peaks. It is hard, how- 
ever, to get long range interactions over the image. These 
are easier to obtain if we first perform operations to 
produce representations in which the valleys, and other 
features, are highlighted. 

These representations are chosen to extract properties 
of the image, such as peaks and valleys in the image 
intensity and places where the image intensity changes 
quickly (an additional representation could be added to 
describe textural properties). These representations do 
not have to be very precise, and they can be calculated 
fairly simply. Our present methods involve using mor- 
phological filters (Maragos, 1987; Serra, 1982) to extract 
these features. The fields are smoothed to ensure long 
range interactions; for details see Yuille et al. (1988). 

In the following we will use @"(x), @,,(x), and QP(x) 
to represent both types of fields and will specify in the 
text whether they are intensity fields, calculated by (2), 
or representation fields. 

The Eye Template 

After some experimentation and informal psychophysics 
on the salience of different features of eyes we decided 
that the template should consist of the following features: 

1. A circle of radius r, centered on a point &. This 
corresponds to the boundary between the iris and the 
whites of the eye and is attracted to edges in the image 
intensity. The interior of the circle is attracted to valleys, 
or low values, in the image intensity. 

2. A bounding contour of the eye attracted to edges. 
This contour is modeled by two parabolic sections rep- 
resenting the upper and lower parts of the boundary. 
It has a center x,, width 2b, maximum height a of 
the boundary above the center, maximum height c of 
the boundary below the center, and an angle of orien- 
tation 8. 

3. Two points, corresponding to the centers of the 
whites of the eyes, which are attracted to peaks in the 
image intensity. These points are labeled by x, + pl(cos 
8, sin 8) and x, + p2(c0s 8, sin O ) ,  wherepl  2 0 and 
p2 5 0. The point x, lies at the center of the eye and 8 
corresponds to the orientation of the eye. 

4. The regions between the bounding contour and the 
iris also correspond to the whites of the eyes. They will 
be attracted to large values in the image intensity. 
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These components are linked together by three types 
of forces: (1) forces that encourage x, and x, to be close 
together, ( 2 )  forces that make the width 26 of the eye 
roughly four times the radius r of the iris, and ( 3 )  forces 
that encourage the centers of the whites of the eyes to 
be roughly midway from the center of the eye to the 
boundary. 

The template is illustrated in Figure 3.  It has a total of 
9 parameters: s, &, p l ,  p 2 ,  Y ,  a, h, c, and 0. All of these 
are allowed to vary during the matching. 

To give the explicit representation for the boundary 
we first define two unit vectors 

el = (cos 0, sin 0), ez = (-sin 0, cos 0)  ( 3 )  

which change as the orientation of the eye changes. A 
point x in space can be represented by (x1,xZ) where 

x = x le l  + x2e2. ( 4 )  

Using these coordinates the top half of the boundary 
can be represented by a section of a parabola with 
XI€[ -b,b] 

x 2 = a -  
a 
b2 
- x: (5) 

Note that the maximal height, x2, of the parabola is a 
and the height is zero at x1 = kb ,  Similarly the lower 
half of the boundary is given by 

where xle[ -b,bl. 

The Energy Function for the Eye Template 

We now define a potential energy function for the image 
that will be minimized as a function of the parameters 
of the template. This energy function not only ensures 
that the algorithm will converge, by acting as a Lyaponov 
function, but also gives a measure of the goodness of fit 
of the template. More robust energy functions are de- 
scribed in section four. 

The complete energy function Ec(x,,  &,PI ,p2 ,  a,b,c,r,0) 
is given as a combination of terms due to valley, edge, 
peak, image, and internal potentials. More precisely, 

Ec = Ev + Ee + Ei + Ep + Eiiiternal (7 )  

where 

1, The intensity/representation valley potentials are 
given by the integral of the intensity/representation fields 
over the interior of the circle divided by the area of the 
circle, 

E, = - I @,(x)dA (8 )  Area Lircle-Area 

2 .  The intensityhepresentation edge potentials are 
given by the integrals of the intensity/representation edge 
fields over the boundaries of the circle divided by its 
length and over the parabolas divided, by their lengths, 

E,= -A @e(x> ds LtWgtb “ I  Circle-Bound 

Ia ... 

Ic 
Figure 3. The eye template 
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3.  The intensity peak potentials attempt to maximize 
the intensity peak field, QP(x), between the circle and 
the parabolas, again divided by the area, 

4. The representation peak potentials are the repre- 
sentation peak field evaluated at the two peak points and 
are given by 

E, = c6{@(& + p l e l )  + + p z e ~ ) )  (11) 

5. The internal potentials are given by 

The {el} and {ki} are usually fixed coefficients but we 
will allow them to change values (corresponding to dif- 
ferent epochs) as the process proceeds. Changing the 
values o f  these coefficients enables us to use a matching 
strategy in which different parts of the template guide 
the matching at different stages. For example, the valley 
in the image intensity corresponding to the iris is very 
salient and is more effective at “attracting” the template 
from long distances than any other feature. Thus its 
strength, which is proportional to cl, should initially be 
large. Orienting the template correctly is usually best 
performed by the peak terms, thus c6 should be large in 
the middle period. The constants c2 and cj can then be 
increased to help find the edges. Finally, the terms in- 
volving the image intensity can be used to make fine 
scale corrections and determine the final measure of fit. 
This corresponds to a strategy in which the position of 
the eye is mainly found by the valley force, the orienta- 
tion by the peak force, and the fine scale detail by the 
edge and intensity forces. In this scenario the values of 
the cs will be changed dynamically. Typical values for 
the coefficients are 

(CI , ~ 2 , ~ j , ~ 4 , ~ + 6 )  z (4000,50,50,125,150,50) 

and 

(k iP2Pj)  == (10,1,0.05). 

The individual energy terms can be written as func- 
tions of the parameter values. For example, the sum over 
the boundary can be expressed as an integral function 
of G, a,  6 ,  c, and 8 by 

where s corresponds to the arc length of the curve and 
Length to its total length. Note that scale independence 
is achieved by dividing line integrals by their total length 
and double integrals (over regions) by their area. 

The minimization is done by steepest descent of the 
energy function in parameter space. It is assumed that 
preprocessing, or interactions between different tem- 
plates (see section two), will allow the eye-template to 
start relatively near the correct position. Alternatively the 
eye template might locate several promising positions, 
probably at valleys in the intensity, and investigate them. 

Thus the update rule for a parameter, for example r, 
is given by 

These terms are explicitly calculated in Yuille et al. 
(1988). 

Simulation Results for Eyes 

The theory was tested on real images using a SUN4 
computer. The valleys, peaks, and edges are first ex- 
tracted and smoothed (see Fig. 4).  The template is then 
given initial parameter values, positioned in the image 
and allowed to deform itself using the update equations. 

Some initial experimentation was needed to find good 
values for the coefficients and a number of problems 
arose. For example, the intensity and valley terms over 
the circle attempt to find the maximum value of the 
potential terms averaged inside the circle. This led to 
the circle shrinking to a point at the darkest part of the 
iris. This effect was countered by strengthening the edge 
terms, which pull the circle out to the edge between the 
iris and the whites of the eye. Another problem arose 
because the iris might also be partially hidden by the 
boundary of the eye, thus the part of the circle outside 
the boundary cannot be allowed to interact with the 
image. This can be dealt with by considering only the 
area of the circle inside the bounding parabolas. 

The system worked well after good values were found 
for the coefficients. The templates usually converged to 
the eye provided they were started at or below it. The 
valleys from the eyebrows caused problems if the tem- 
plate was started above the eye. 

The values of the coefficients changed automatically 
during the course of the program to define six distinct 
epochs: 

1. The coefficients of the valley forces are strong and 
the force is calculated using the representation fields. 
The coefficients of the peak and edge forces are zero. 

Volume 3, Number 1 64 Journal of Cognitive Neuroscience 



Figure 4. The valley, edge, and peak representations for the eye region 

During this epoch the valley forces pull the template to 
the eye. 

2. The valley forces are calculated using the intensity 
field, with the peak and valley fields still zero. This helps 
scale the circle to the correct size of the iris. 

3. The edge coefficients for the boundary of the circle 
increase. This fine tunes the size of the circle as it locks 
onto the iris. 

4. The peak coefficients increase. This enables the 
peak forces, using the representation field, to rotate the 
template and get the correct orientation. 

5. The peak forces are calculated with the intensity 
field. This helps adjust the size of the outer boundary of 
the template. 

6. The coefficients of the edges of the boundary 

are increased. This fine tunes the positions of the 
boundaries. 

The program changes epoch automatically when it has 
reached a steady state of the energy function with the 
appropriate coefficient values (i.e., when it thinks it has 
accomplished its goals for that epoch). 

Figure 5 illustrates the program running in the differ- 
ent epochs. Note that the template can start some dis- 
tance away from the eye, can scale the iris, rotate the 
eye, and lock onto the edges. The runtime for the pro- 
gram is between 5 and 10 min on a S U N 4  

Note that in the above scenario the representation 
fields are used for long range attraction and the intensity 
fields do the fine scale tuning. If the initial guess for the 



Figure 5. A dynamic se- 
quence for the eye left to right 
and top to bottom. The first 
frame shows the initial confg- 
uration and the remaining 
frames show the results at the 
ends of  the epochs. 

location and size is accurate then the representation 
fields are unneccessary. 

Summary of Feature Templates 

Yuille et al. (1988) describes how this work can be ex- 
tended to detect mouths. We define a parameterized 
template for the mouth and allow it to adjust itself to the 
image (see Fig. 6). 

it seems relatively straightforward to find templates for 
the other “internal” features of the face, such as eye- 

brows, noses, chins, and moustaches. There has also 
been some promising initial work on extracting fore- 
heads (P. Maragos, private communication). It is less 
clear how to generalize this idea to find “external” fea- 
tures such as the ears or hair. Possibly features of this 
type are best found at a coarser level. 

The approach can be directly adapted to many other 
recognition problems. For example, Lipson, Yuille, 
O’Keefe, Cavanaugh, Taaffe, and Rosenthal (1990) de- 
scribe a successful system for extracting trabecular bones 
from medical images. 
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Figure 6. A dynamic sequence for the mouth template on  an open and a closed mouth. In the upper picture the template is pulled in by the 
peak and edge forces fr‘rorn the teeth. In the lower picture the template is mainly pulled in by the vallev forces and the region for the teeth 
vanishes 

In the experiments described above the initial values 
for the templates were selected by hand and were often 
chosen to make the task hard. For an automated system 
there are two extreme strategies. The first approach 
would be to run global face templates (see the second 
section) to determine likely positions for the features, 
which could then be checked using deformable feature 
templates. The second strategy, which is purely local, 
would be to use the representation fields to determine 
possible likely candidates. For example, the eye template 
might start at places where the valley representation was 
strong, thereby eliminating the need for the first epoch 
and enabling the template to act directly on the image 
intensity, Since there will probably be several candidates 
we would need to start several deformable templates off 
in parallel and see which gives the best results. This 
would require some criteria for selecting the best fit. A 
natural choice would be the one with the lowest final 
energy function. This, however, might need to be sup- 
plemented by taking into account the spatial relation- 
ships to other features and the a priori probability of the 
final parameter values. In some special cases it may be 
possible for the energy to be low but for the parameter 
values to be extremely unlikely. Such a situation can 
occur if the mouth template gets started on the eye and 
becomes grotesquely deformed (Yuille et al., 1988) (see 
Fig. 7). 

Deformable feature templates give a promising ap- 
proach to extracting features. A problem with the ap- 
proach is the difficulty of extracting the representation 
fields automatically since the fields, in particular the peak 
fields, are sensitive to the scale of the morphological 
operators. This does not matter for the final measure of 
fit, which is based almost entirely on the intensity fields, 

but it would affect the matching strategy (the epochs). 
In the next section we describe a reformulation of de- 
formable templates that makes them more robust and 
reliable. 

ROBUST FEATURE TEMPLATES 

The templates described in the previous section were 
designed on a somewhat ad hoc basis. There was a 
measure of fit, the energy function, but no explicit im- 
aging model. There are also several situations for which 
the templates may fail, for example, if the mouth is 
smoking a cigarette. In this section we discuss current 
research, which attempts to put the templates in a more 
theoretical setting and make them more robust (Hallinan 
& Mumford, 1990). We will concentrate chiefly on the 
imaging model for the template and its measure of fit, 
with less emphasis on how the matching is done to 
minimize this measure. 

This work draws on ideas developed in Robust Stat&- 
tics (Huber, 1981; ltousseeuw, 1987; for other applica- 
tions to vision see Pavlidis, 1986; McKendall & Mintz, 
1989). To motivate these ideas consider the problem of 
estimating the mean from a set of samples {x,}, i = 
1, . . . , N. The sample mean is defined to be 

N 

x = (1” c x, (15) 
2 = 1  

and minimizes the least squares error 
N 

E(x) = x (x - x2>” (16) 
r = 1  

The sample mean, however, is extremely sensitive to 
outliers. By introducing a new point x N + l  a sufficiently 
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Figure 7. A grotesquely de- 
formed template. See text. 

long way away from the other points we can alter the 
value of the sample mean by an arbitrarily large amount. 
A robust technique for estimating the mean should be 
relatively independent of such outliers and should also 
enable us to identify the outliers themselves. 

There are several possible robust techniques. Perhaps 
the most simple is least trimmed squares. For each value 
of x we order the residuals ri = (x - so that r(1) 5 

r(2)  cr , . .. We now minimize the least trimmed squares 
(LTS) 

n I 

ELTS(X) = 2 (17) 
2 = l  

where M is an integer less than N giving the proportion 
of points that we wish to match. If M = OlN then this is 
the least a-trimmed squares estimator, closely related to 
the a-trimmed mean estimator. M may be altered adap- 
tively. 

Thus minimizing EL.&) with respect to x gives us the 
estimate o f  the mean for the best M points. We can 
simultaneously get an estimate of the variance of the 
residuals of  these points. The remaining N - Af points 
are treated as outliers if their residuals are significantly 
larger than the variance. 

This example demonstrates two important aspects of 
Robust Stutistics: (1) finding an estimate o f  a quantity by 

discarding, or reducing the influence of, some of the 
data, and ( 2 )  analyzing the residuals of the discarded 
data. 

Hallinan and Mumford propose adapting these tech- 
niques to produce a Robust Deformable Template. To 
illustrate these ideas we consider their reformulation of 
the eye template. 

Their model of the ideal eye has essentially the same 
geometry as the old eye template (see the third section). 
In their ideal imaging model the iris and the whites of 
the eyes are both assumed to have constant image inten- 
sity This can be distorted by the addition of noise and 
by the overlay of occluding objects (see Fig. 8). Note that 
for blue eyes the iris and pupil have different intensity 
and a more complex model is needed. The use of robust 
matching criteria means that the system is not very sen- 
sitive to the precise form of the imaging model. 

The measures of fit aim to find the parameters of the 
template that minimize the mean in the iris region, max- 
imize the mean for the whites of the eyes, and maximize 
the mean edge strength at the boundaries. This is some- 
what similar to the measure used by the eye template in 
the third section for the fine scale matching when the 
representation fields are not used. The difference lies in 
the use of an underlying imaging model, robust methods 
for calculating the means, residual analysis, and the use 

1 
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Figure 8. (a) The ideal eye has constant low intensity in the iris 
and constant high intensity in the whites. (b) The ideal eye with 
noise superimposed. (c)  The ideal eye arith an occluding bar. 

of the variance to determine the degree of flatness of the 
regions. The goodness of fit can be defined in a dimen- 
sionless, parameter-free way as the percentage of vari- 
ance accounted for by the imaging model in a fixed 
proportion (1 - a) of the pixels. 

The use of robust techniques, in particular the a- 
trimmed mean, enable the means to be estimated cor- 
rectly and the template matched even when a significant 
part of the eye is occluded (see Fig. 8c). Intuitively the 
measures reward good partial matches more than they 
penalize poor partial matches. Hallinan and Mumford 
also suggest that residual analysis could be applied so 
that matches could be strengthened if the discarded data 
could be interpreted as an occluding object. Thus the 
image intensity within the portion of the bar in Figure 
8c, which overlaps with the eye might be identified as 
outliers. Further analysis could show that these outliers 
form a coherent structure, the bar, occluding the eye. 

The chief advantage of this approach is that it specifies 
a precise imaging model, allowing for gross distortions 
such as the occluding bar, and designs the fitness mea- 
sure accordingly. It is hence possible to say precisely for 
which class of stimuli the method will work. Of course 
it is necessary to do  experiments to test how accurate 
the imaging models are. 

CONCLUSION 

Deformable templates offer a promising and concep- 
tually attractive way for locating features, and sets of 
features with given spatial relations, by exploiting prior 
knowledge. The parameters of the templates can then be 
used to describe and recognize faces. 

The methods described here are consistent with two 
extreme strategies for face description. In the bottom up 
strategy individual features are located before their spa- 
tial relations are determined. In the top down approach 
the spatial relations are used to guide the location of 
individual features. 

The templates we have described are essentially “self- 
ish.” They try to grab the parts of the image that they can 
explain and ignore the rest. One can contrast this with 
the more Bayesian approach used by Chow et al. (1989), 
which attempts to extract the outline of a hand by assum- 
ing that the hand and the background have constant, 
though unknown, image intensities with superimposed 
gaussian noise. This approach attempts to explain the 
whole image and requires knowledge of the background 
as well as knowledge of the object being detected. In 
cases where knowledge of the background is unavailable 
the selfish template approach may be preferable. 

Selfish templates alone, however, might not be suffi- 
cient for giving a good image interpretation. Instead they 
might need to be supplemented by “altruistic” templates 
that attempt to explain the whole image. Although selfish 
templates try to match from the template to the image 
the altruistic templates try to match from the image to 
the templates. Thus some of the altruistic templates may 
be only partially matched. The use of residual analysis 
might provide a link between these two template types. 
The altruistic templates might try to explain the parts of 
the image unexplained by the selfish templates. 

The measures based on Robust Stat&tics enable the 
template to be matched even when part of it is occluded. 
Residual analysis may be able to isolate the occluder and 
describe it separately. By refining the imaging models 
and the robust measures of fit we expect to be able to 
reliably extract features from images of faces under a 
large variety of lighting conditions. 

Deformable templates were invented as a technique 
for doing computer vision and were not primarily mo- 
tivated by considerations from psychological and neu- 
roscientific experiments. Nevertheless there are some 
intriguing connections to such experiments, which we 
are currently investigating. The deformable templates 
themselves have some similarities to mental images 
(Kosslyn, 1980). In a slightly different vein they would 
suggest an initial representation of a face somewhat sim- 
ilar to a caricature though with more information. This 
representation, the description generated by the local 
and global deformable templates, would include peaks 
and valleys, in addition to edges, and the spatial relations 
between features. It is interesting that, though it is usually 
harder to recognize someone from a caricature than 
from a photograph, using caricatures can speed up re- 
action time for very familiar faces (Rhodes, Brennan, & 
Carey, 1987). The global face models might be related to 
the results of Haig (1984) on the sensitivity of observers 
to the spatial relations between features. 
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