Psych 128/290Q: Probabilistic models of cognition
April 28: Reinforcement learning

Our discussion of learning so far has paid relatively little attention to the costs of errors and rewards
associated with success. Both supervised and unsupervised learning have an implicit expectation that getting
the correct answer or identifying appropriate latent structure are desirable, and this assumption can be made
explicit by formally defining a set actions an agent might take and the utility associated with those actions.
However, thinking about these rewards also leads us to another way of casting learning problems, in which
the goal of the agent is simply to maximize reward. In these reinforcement learning problems, learning is
necessary in order to establish which patterns of behavior are likely to lead to reward.

Formalizing reinforcement learning

The basic reinforcement learning model assumes that there exists a discrete set of states of the environment
S, a discrete state of actions an agent can take in that environment A, and a set of reinforcement signals
(including rewards and penalties, represented by positive and negative real numbers) probabilistically asso-
ciated with those states and actions. This model can be augmented with assumptions about whether the
agent perceives the state of the environment directly, or receives noisy signals about that state (known as
partial observability). The goal of the agent is to find a policy 7 : § — A (ie. a function mapping states to
actions) that maximizes long-term reward. While there are different ways of defining what long-term reward
means, one standard approach is to use the expected discounted infinite horizon reward, given by

Zwtn] (1)

t=0

E

where 7; is the reward at time ¢ and the expectation is with respect to the values of r; when pursuing the
policy .

The long-term reward given by pursuing a policy 7w clearly depends on the joint distribution of states
and the influence of actions on those states. In principle, both the distribution and the influence of actions
can be quite complicated, with states depending on other states and actions arbitrarily far in the past.
Making headway on solving the reinforcement learning problem thus usually requires making some simplifying
assumptions. One standard assumption is that the environment in which the agent is operating has a Markov
property, with the probability distribution over the next state depending only on the current state and the
current action. The joint distribution on states given actions can thus be found by multiplying together
a sequence of distributions of the form p(si11|st,a:), where s; and a; are the state and action at time ¢
respectively. If we add the assumption that r; depends only on s; and ag, the result is a Markov decision
process (MDP). The MDP is fully specified by the states S, actions A, reward function R(s,a), and state
transition function T'(s,a,s") = p(st+1 = s|st = §',a: = a).

Solving a MDP means finding the policy 7 that maximizes the long-run reward, as given in Equation 1.
Characterizing the solution is made easier by defining the value of a state s to be

i ’Yttt] (2)

t=0

V*(s) =max E

where we assume that the learner starts in state s and thus chooses a policy 7 beginning with that state.
This can also be expressed recursively, with

V*(s) = max (R(s, a)+y Z T(s,a, s')V*(s')) (3)

s’eS

making it clear that the value of the state s is related to the value of the states s’ reached by taking the best



action a. This is known as a Bellman equation. The optimal policy is then

7 (s) = arg max <R(s, a)+y Z T(s,a, 5’)V*(s’)> 4)

s'eS

which can be computed directly from the reward function R(s,a), the state transition function T'(s,a,s’)
and the value function V*(s). We can thus solve any MDP if we can estimate these three functions.

Finding an optimal policy in a known model

If we know R(s,a) and T'(s,a,s’), we can estimate the value function by using a procedure known as value
iteration. Defining Q(s, a) to be the total long-run reward associated with taking action a in state s, we have

Q(s,a) = R(s,a) +~ Z T(s,a,s)V(s'). (5)

s'eS

Value iteration iterates between estimating Q(s,a) using the current estimate of V(s) (by applying this
equation) and estimating V' (s) using the current estimate of Q(s,a) (by taking V(s) = max, Q(s,a)). This
procedure will converge to the true function V(s), and can consequently be used to identify the optimal
policy.

An alternative approach is trying to estimate the optimal policy directly. The policy iteration algorithm
starts with an arbitrary policy, then computes the value of each state under that policy by solving the
equations

Va(s) = R(s,m(s)) +7 ) T(s,m(s),s)Va(s) (6)
s'eS
for V:(s). The resulting value function can be used to compute Q(s, a) for each state-action pair (substituting
Vx for V in Equation 5), and then the policy can be updated such that 7 (s) = argmax, Q(s,a). This
procedure can be iterated until it reaches a fixed point. Since the policy improves at every iteration, the
resulting policy is optimal.

Learning an optimal policy in an unknown model

Value iteration and policy iteration provide ways to identify an optimal policy when the model of the
environment is known. However, a large part of the challenge of reinforcement learning is dealing with
situations where R(s,a) and T'(s,a,s’) are unknown, and learning an optimal policy in these cases is an
ongoing topic of research. Current approaches can be divided into model free approaches, which aim to
make it possible to estimate the value function without estimating R(s,a) and T(s,a, s"), and model-based
approaches, which seek to build a model of the environment from which these functions can be identified.
Model-based approaches largely reduce to the kind of unsupervised learning problems we have already
discussed in detail, so the focus here will be on model-free approaches.

Model-free approaches typically define simple learning rules that can be used by a learner to estimate the
quantities required to identify an optimal policy without needing to build a full model of their environment.
One such algorithm is temporal difference (TD) learning, in which the estimated value of a state is updated
each time the learner visits that state and receives a reward. The update rule is

Vi(s) =V(s) +a(r++V(s) = V(s)) (7)

where s’ is the state reached by the agent after taking an action a from state s, and r is the reward associated
with that action. Intuitively, this can be justified by viewing s’ as a sample from the distribution defined
by T'(s,a,s’). More formally, we can observe that if we assume we are taking the optimal action given our
current beliefs, then
V(s)=r+~ Z T(s,a,s)V(s') (8)
s'eS



where r is the reward provided by that action. This equation should hold provided our estimate of V(s)
is accurate. If this is not the case, then subtracting V(s) from the right hand side gives us a kind of error
signal, indicating whether V' (s) is too high or too low based on the values of the other states. Denoting this
error signal §, we have
S=r+vY T(s,a,s)V(s) = V(s) (9)

s'eS
which justifies the simple learning rule

V(s)=V(s) +ad (10)

where « is a learning rate. However, this still requires us to know T'(s,a, s’). We obtain the model-free TD
learning rule by treating the state s’ as a sample from the distribution associated with T'(s, a, s’) — a single
sample Monte Carlo approximation to the expectation in Equation 9. Provided enough iterations of learning
are performed, and the learning rate is decreased appropriately over time, the algorithm will converge to a
correct estimation of V (s).

Another model-free approach is Q learning, in which we seek to estimate the function Q(s,a) instead of
V(s) directly. Substituting the definition of V(s’) into Equation 5, we have

Qls,0) = Ris,a) +7 3 T(s,a,5) max Q(s', ') (11)

s'eS

which gives a recursive definition of Q(s,a). Using a similar argument to that given for V(s) above, we can
define a simple learning rule for estimating Q(s, a) based on how well it satisfies these equations. Specifically,
we have

Q(s,a) = Q(s,a) + a(r + ymax Q(s',a’) — Q(s, a)) (12)

where « is once again a learning rate. Convergence to the correct Q(s,a) will occur as the number of
iterations increase, provided « is decreased appropriately over time.



