Motion Modeis: Part 1

A.L. Yuille and D. Kersten

Abstract

I. MOTION

This section describes two types of models. The first performs simple motion measurement. The second
integrates motion spatially to obtain a more global percept. .

Motion perception is locally ambiguous as illustrated in figure (1). Short-range motion suffers from the
aperture problem while long-range motion has the correspondence problem (long range motion will be
covered in the next lecture). Prior models of plausible motion are required to resolve these ambiguities.
We briefly describe the history of the slow-and-smooth prior to illustrate how justification has become
more quantitative over time.
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Fig. 1. The aperture problem arises for short-range motion of contours (left) where only the component ¥ - 7i of the velocity normal to the
contour can be observed and the tangential component @ - £ is unknown. The correspondence problem arises for long-range motion because
there are many ways to match the dots at time ¢ with those at ¢ + 1. The human vision system typically prefers slow-and-smooth matching
(center panel) although other matches are possible (right panel).

The input to motion measurement is a set of images. Some of the earliest work was done by Reichardt
et al. who developed a correlation model based on studies of the fly and beetle visual systems [?]. Later,
mechanisms of directional selectivity were studied in vertebrate retina of the rabbit [?]. Some phenomena
of human motion perception can be explained by modified versions of these early correlation or correlation-
like models [?], [?], [?], [?1.[?]. We describe the basis of these types of models in section (I-A).

Early computational studies (Ullman [?]) showed that several perceptual phenomena of long-range
motion could be described by a ‘minimal mapping’ theory that, in Bayesian terms, assumed a slowness
prior. Subsequent work showed that smoothness priors accounted for findings on short-range motion
(Hildreth [?]), including the surprising fact that an ellipse rotating in the image plane is perceived to
move non-rigidly. Yuille and Grzywacz [?] showed that a slow-and-smooth prior could account for a
large range of motion perceptual phenomena — including motion capture and motion cooperation — both
for short- and long-range motion. Weiss and his collaborators showed that slow and slow-and-smooth
priors (Weiss and Adelson [?], Weiss et al. [?]) could explain other short-range motion phenomena, such
as how percepts can change dramatically as we alter the balance between the likelihood and prior terms
(i.e. for some stimuli the prior dominates the likelihood and vice versa). These theories are discussed in
section (I-C).

A. Motion Measurement: Spatio-Temporal Filters

Spatio-temporal filters are biologically plausible ways to measure motion which agree with properties
of cells in the visual cortex. The standard model suggests two classes of cells where the first are spatio-
temporal filters which are sensitive to the directions of motion while the second combine outputs of these
filters to estimate the motion itself [?] (Grzywacz and Yuille, Simoncelli, Schrater et al. refs!!).



Measuring the motion velocity assumes that locally the intensity can be modeled as a linear translating
pattern:

I(Z,t) = F(7 — ). 1)

Differentiating with respect to Z and ¢ (using VI = VF and % = —7-VF), gives the optical flow
equation:

7-VI+ % = 0. )
A similar argument applies if we filter the image by any spatial-temporal filter G*(Z,t) to obtain:
Gt I(Z,t) = /G(f— y,t —s)I(y, s)dsdy. 3)
Hence each filter gives a constraint on the velocity,
ﬁ-ﬁG“*IjLaGM*I:O 4)
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By applying Fourier analysis to equation (3), it can be shown that filters tuned to frequencies &, w; will
tend to have the biggest response if - & + w; = 0. No realistic filter can be tuned to a single frequency
(the filter would be exp{i(dJ - ¥ + w;t)} which has infinite spatial and temporal extent). But it can be
shown (Yuille and Grzywacz!!) that if we use spatio-temporal Gabor functions weakly tuned to &, w;
(Gabor filters satisfy optimal localization in both space-time and frequency) then the biggest responses
to the stimuli occur when o' - & 4+ w; = 0 (it is unlikely that the real receptive fields are spatio-temporal
Gabors, but they are probably reasonable approximations).

This gives a mathematical justification for the two stage model. The first set of cells are tuned roughly
to spatial-temporal filters and estimate properties of the motion. The next stage uses the activities of the
most responsive cells to estimate the velocity. See figure (2).

Fig. 2. Spatio-temporal Gabors

These models give reasonable fits to the activities of cells in the early visual cortex.

B. Smootheness Assumption on Contours: Hildreth’s Theory

Consider a contour 7(s) where s is the arc-length parameter (i.e. |(d7)/ds| = 1). The normal to the
contour is 7(s). Suppose the real velocity of the contour is ¥/(s). The normal component of the velocity
is u(s). The observation model is:

/ ds{ii(s) - fi(s) — u(s)}2. )

This does not provide enough information to estimate ¢/(s) uniquely. Hildreth proposed imposing a
smoothness requirement of the velocity. This is done by adding a term \ | ds{% . %} to the observation
model. This gives:

Ev) = /ds{ﬁ(s) 7i(s) —u(s)}? + )\/ds{g—j : % . (6)

The minimum of E(¢)) can be found by solving the Euler-Lagrange equations:

0*v

Aoy = {iils) - ls) — u(s)Yils). )



The solution to this equation gives roughly the correct solution for the rotating ellipse — i.e. it predicts
non-rigid rotation. It is also easy to analyze the solutions and show that this theory only gives the
true/veridical result if the velocity (s) is constant (i.e. independent of s). To see this, the correct solution
occurs only if 7i(s) - ¥(s) — u(s) = 0. This implies that %?Z = 0. This gives a solution 2 = & which is
constant. But the constraint that the contour is closed means that ¢ = 0, hence ¥ is constant.

C. Simple Slow-and-Smooth: Example of Multi-Dimensional Gaussian .

There is plenty of psychophysical evidence that local motion estimates are pooled to give a global
perception. The evidence suggests that this assumes that the motion is locally slow and smooth. This section
describes a simple version of this model for short-range motion based on [?]. This can be formulated
within the probabilistic framework and to simplify the mathematics we restrict the probability distributions
to be Gaussians (note this simplification leaves out some of the higher-order smoothness terms which are
needed for some phenomena).

The model is formulated as estimating the two dimensional velocities (U, V) = {(U;,V;) : i € A}
defined over an image lattice A. Smoothness is defined over a local neighborhood Nbh(i) defined on the
lattice, this is nearest neighbor in this example — see figure (3).
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Fig. 3. The slow-and-smooth model is formulated on the image lattice (left) with neighborhood structure given by nearest neighbors in
the horizontal and vertical directions. The model assumes that we can only directly observe the velocity component normal to the aperture
(right).

The likelihood functions and the slow-and-smoothness prior are defined by Gibbs distributions:

P(D|U,V) = %exp{—E[D; U, V1,

1
With
E[D;U, V]| = Z%(Uisin@ + V; cos 0;)?
i€
EWUV)=a) {UF+VY+8) > {(U—=U)*+(Vi=Vy)}. ©)
i€A i€A JENDBh(3)

The data term assumes that we can only observe one component of the velocity specified by a known
angle 0;. The parameter v; = 0 if there are no observations at lattice site 7, and otherwise ; = 1/(207?)
where o2 is the variance of the data at 7. The prior terms imposes both slowness and smoothness terms
— weighted by « and [ respectively.

The posterior distribution P(U,V|D) «x P(D|U,V)P(U,V) is a Gaussian. This is because both
P(D|U,V) and P(U,V) are Gaussians (and the conjugate of a Gaussian is also a Gaussian).



We estimate the most probable motion (U, V') from P(U,V|D). For Gaussian distributions, the MAP
estimate and the mean estimate are identical. Both reduce to minimizing the energy function F (U, V') +
E(D;U, V) which is quadratic in (U, V') and so, after the differentiation, we obtain the following equations:

al; + 8 Z ((Afl — U]) —v{D; — sin 0,U; — cos Qi(f/i)}sin 0;, Vie A
FENbh(3)
aVi+ Z (V, — VJ) —v{D; — sin 0,U; — cos 91(‘71)} cosb;, Vi e A. (10)
JENbR(3)
These linear equations can be solved by standard packages. But we now give some intuition for them
by considering several special cases, shown in figure (4).

Fig. 4. At lattice nodes with no observations the estimated velocity will be less than the average of its neighbors — see central pixel (far left)
and the top left pixels (left). Otherwise the estimated velocity will tend to smooth out the observations (right) yielding a smoother percept
(far right).

First, suppose we are at a position where there is no observation and so 7; = 0. In this case, the
estimated velocity at ¢ is a sub-average of the velocities of its neighbors:

[ — 52]'6th(¢) Uj V= BZjGth(i) Vi
" a+|NbhB T a+|Nbh|B

(1)

If there is no slowness — i.e. &« = 0 — then the velocity estimate (Ui, Uj) is an average of the velocity
of its neighbors, but if o > 0 then the estimates are lower. So slowness means that estimate of motion
speed decreases in regions where there are no observations, in agreement with experiments. If there is no
smoothness — 3 = 0, then the estimate of velocity is zero at node 1.

Second, consider a lattice node where there is an observation. This gives estimates which encourage
similarity to the motion estimates for the neighbors and also agreement with the observations.

T — BZjEth(i) Uj + 7 D;sin ¢;

o+ BINbh| +7;sin®6;

B3 jenmng Vi +7iDicosb;
o + BINbh| + ~; cos? 0;

A special case occurs when we set S which removes the smoothness constraint. In this case we obtain:

Vi = (12)

A v; D; sin 6; v; D; cos 0;

[, = Disinb -y

y Vi= . 13
a 4+ 7, sin” 6; a + 7y; cos? 0; (13)

It can be shown that this encourages the estimated motion to be direction (sin 6;, cos ;).

Weiss et al [?] imposed a slowness prior and studied the trade-of’s between the measurement and the
prior terms, by varying the strength of the parameters 7;. This showed the effect of luminance contrast
on the perception of motion where the speed and direction of moving patterns depends on the contrast.
For example, this analysis explains the odd combination of facts that a thin horizontally moving rhombus
appears to move diagonally at low contrasts and horizontally at high contrasts, whereas a fat rhombus



appears to move horizontally at all contrasts. When contrast is low, retinal image information becomes
less reliable, and so the Bayesian ideal observer shifts more weight to the prior probability distribution on
motion velocity; this shift in relative weight alters the optimal estimate of speed and direction. This can
be explained by the model above, by seeing how the behavior varies if we changes the data parameter .

The original use of the slow-and-smooth prior was justified on intuitive grounds and on its ability to
model experimental findings. Theoretical arguments [?],[?] showed that slow-and-smoothness priors result
from the geometry of image formation (perspective or orthographic projection) provided we assume that
objects in the three-dimensional scene are equally likely to move in all directions and make weak, and
reasonable, assumptions about the distribution of their speed. But this did not give quantitative form for
the priors. Studies of human performance give ways to estimate motion priors (Stocker and Simoncelli
[?]) which, for slow-and-smooth motion, show that the priors that humans use are more robust than those
originally proposed [?],[?] More recently, it has been possible to learn motion priors for natural image
motions (Black and Roth [?],[?]). Their findings show biases to slow-and-smooth and are similar, but
more robust, to the specific forms used in the models. The differences between these models correspond
to different choices of potentials.

D. Slow-And-Smooth: Spatial Fall-off

Psychophysical experiments show that dots can be captured by the motion of neighboring dots. This
requires an interaction between dots that falls off with distance. We now show how the alow-and-smooth
theory can account for this.

Consider a set of dots moving with velocities {¢;; : i = 1,..., N} at positions {Z; : i = 1,..., N}. This
gives a data term Zfil |U(#;) — ¥;]*. Then add a slow-and-smooth term. We can express this as \ [ dvLv,
where L is a differential operator.

N
> i) — G+ )\/dUEU. (14)
i=1

To simply the analysis we will work in one-dimension. This replaces v and v; by v and v;.

The representer theorem states that the solution can be given by a linear combination of the Green’s
function G(x) of the operator L — i.e. LG(z) = d(x). More precisely:

N
v(z) =Y wG(E - T), (15)
i=1
where @ = (ay, ..., ay) obey:
(I —\G)d = o, (16)

Here [ is the N x N identity matrix, G is the N x N matrix with components G(z; — x;).

The solution depends on the form of the Green function. We can, for example, select the differential
operator L so that the Green function GG is a Gaussian. In this case the velocity falls off with distance
away from the data points. This enables the slow-and-smooth model to capture other motions that are
nearby and not ones which are further away.

It can be shown that the Green’s function will fall off with distance provided we include a slowness
terms [ dZ|0(Z)|.
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