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Introduc<on	

•  Es<mate	ar<culated	2D	human	pose	from	a	
single	sta<c	image.	



Introduc<on	

•  Fundamental	task	in	computer	vision.		
– Ac<vity	recogni<on,	Image	understanding.	

•  Applica<ons	
– Video	surveillance	/	analysis.	
– Fashion	item	localiza<on	etc.	



Related	work	

•  Most	work	has	been	based	on	graphical	model	
– Pishchulin	et.	al.,	ICCV’13,	CVPR’13	
– Yang	&	Ramanan,	TPAMI’13.		

•  ConvNet	based	regression	
– DeepPose,	CVPR’14.	



Pros	&	Cons	

•  Graphical	model	
–  Pro:	Explicit	and	flexible	representa<on.	
–  Con:	Data	independent	pairwise	rela<ons	

•  too	loose	to	be	helpful		
•  too	strict	to	model	highly	variable	poses.	

•  ConvNet	
–  Pro:	Large	learning	capacity,	good	at	extrac<ng	image	info.	
–  Con:	Implicit	and	hard	to	diagnose.		

•  Our	method	
–  Extend	graphical	model	by	stronger	pairwise	rela<ons.	
–  Use	ConvNet	to	extract	info	from	local	image	patches.		



Our	method	

•  Graphical	model:	Image	dependent	pairwise	
rela<ons	(IDPRs).	
–  Local	image	measurements	can	reliably	predict	the	rela<ve	
posi<ons	of	all	its	neighbors	(as	well	as	detect	the	part).		



Our	method	

•  Stronger	pairwise	term	
– Local	image	measurements	give	input	to	the	
pairwise	terms	(as	well	as	the	unary	terms).		

Too	strict	 Too	loose	 Flexible	&	Helpful	



Our	method	
•  Require	method	to	extract	info	from	local	image	patches.	

–  Part	presence	(appearance	terms).	
–  Pairwise	part	rela<ons	(IDPR	terms).	

•  ConvNet	is	suitable.	
–  Full	supervised	training.	
–  We	design	a	ConvNet	to	efficiently	extract	both	info	together.	



State	of	the	art	
•  Extend	graphical	model,	and	combine	it	with	ConvNet.	

–  Significantly	outperforms	the	state	of	the	art	methods	on	
benchmarks	(LSP,	FLIC).	

–  Very	good	cross-dataset	generaliza<on	(Buffy).	
•  The	code	is	public	online.	

Ar<culated	Pose	Es<ma<on	by	a	Graphical	Model	with	Image	Dependent	
Pairwise	Rela<ons.	
Xianjie	Chen,	Alan	Yuille	
Neural	Informa<on	Processing	Systems	(NIPS),	2014.	



The	Graphical	Model	
•  Tree	model:		

–  The	pixel	loca<ons																			of	part	
–  Pairwise	rela<on	types				

•  Unary	terms:	

•  Image	Dependent	Pairwise	Rela<onal	(IDPR)	Terms:	

•  The	Full	score：	
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Image	dependent	terms	

•  ConvNet	for	Image	dependent	terms:	
– Appearance	terms													
–  IDPR	terms		
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Inference	

•  Image	Dependent	Terms	
– Fully	convolu<onal	inference	by	a	single	ConvNet.	
– Computa<ons	common	to	overlapping	regions	are	
shared.	

•  Graphical	model	inference		
– Dynamic	programming	->	Linear	in	#	of	parts.	
– Distance	Transform	->	Linear	in	#	of	loca<ons.	
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Learning	

•  Fully	supervised	learning	
– Annotated	part	loca<ons.	
– Derive	pairwise	type	labels	by	clustering.	

•  Three	sets	of	parameters	
– Mean	rela<ve	posi<ons	r	of	different	pairwise	
rela<on	types,	by	K-means	clustering.	

– Parameters						of	image	dependent	terms,	by	
ConvNet.	

– Weight	parameters					,	by	linear	SVM.	
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Implementa<on	Detail	

•  Data	Augmenta<on	for	ConvNet	training	
–  Local	part	patches	(~20	parts)	+	Random	background	
patches.	

–  horizontally	flipping	+	rota<ng	->	~1	million	patches.	
•  Graphical	model	structure	

–  Predefined	tree	structure.	
–  Part	size	is	roughly	the	size	of	the	head.	

•  ConvNet	structure	is	similar	to	the	AlexNet.	
–  Input:	much	smaller	image	patch	(36	x	36	on	the	LSP)	
– Use	the	Caffe	implmenta<on.	



Rela<onship	to	other	models	
•  Pictorial	Structure	(PS)	

–  Recover	by	allowing	one	pairwise	rela<on	type.	
•  Yang	and	Ramanan’s	Mixtures-of-parts	(MOP),	
TPAMI’13.	
– MOP	defines	different	“types”	of	part	by	its	rela<ve	
posi<on	with	respect	to	its	parent.	

–  Recover	by	only	allowing	parent	to	predict	child.	
•  DeepPose,	CVPR’14	

–  ConvNet	based	regression.		
– Does	not	give	confidence	of	the	es<ma<on.	Assume	
given	bounding	box	of	human.	



Rela<onship	to	other	models	

•  Pishchulin	et.	al.,	Poselet	Condi<oned	Pictorial	
Structures,	CVPR’13	
–  Focus	on	capturing	dependencies	between	non-connected	
body	parts	by	mid-level	representa<on	(poselets).	

– We	focus	on	extrac<ng	more	info	(pairwise	rela<ons)	from	
local	image	measurements.	



Benchmark	Performance	

•  LSP	
– Using	Observer-Centric	annota<on.	
– Percentage	of	Correct	Parts	(PCP)	

Method Torso Head U.arms L.arms U.legs L.legs Mean
Ours 92.7 87.8 69.2 55.4 82.9 77.0 75.0

Pishchulin et al. [16] 88.7 85.6 61.5 44.9 78.8 73.4 69.2
Ouyang et al. [14] 85.8 83.1 63.3 46.6 76.5 72.2 68.6
DeepPose* [23] - - 56 38 77 71 -
Pishchulin et al. [15] 87.5 78.1 54.2 33.9 75.7 68.0 62.9
Eichner&Ferrari [4] 86.2 80.1 56.5 37.4 74.3 69.3 64.3
Yang&Ramanan [26] 84.1 77.1 52.5 35.9 69.5 65.6 60.8

Table 1: Comparison of strict PCP results on the LSP dataset. Our method improves on all
parts by a significant margin, and outperforms the best previously published result [1] by
5.8% on average. Note that DeepPose uses Person-Centric annotations and is trained with
an extra 10,000 images.



Benchmark	Performance	

•  LSP	
– Using	Person-Centric	annota<on.	
– Percentage	of	Correct	Parts	(PCP).	
– Thanks	Pishchulin	et.	al.	for	comparing	different	
methods.	

Method Torso Head U.arms L.arms U.legs L.legs mPCP
Ours 96.0 85.6 69.7 58.1 77.2 72.2 73.6

Tompson et al. NIPS’14 90.3 83.7 63.0 51.2 70.4 61.1 66.6
Pishchulin et al., ICCV’13 88.7 85.1 46.0 35.2 63.6 58.4 58.0

Wang& Li, CVPR’13 87.5 79.1 43.1 32.1 56.0 55.8 54.1

Table 1: Comparison of strict PCP results on the LSP dataset using Person-Centric anno-
tations.



Benchmark	Performance	

•  FLIC	
– Upper-body	human	poses.	
– PCP	&	Percentage	of	Detected	Joints	(PDJ)	

Method U.arms L.arms Mean
Ours 97.0 86.8 91.9

Tompson, NIPS’14 93.7 80.9 87.3
MODEC, CVPR’13 84.4 52.1 68.3

Table 2: Comparison of strict PCP results on
the FLIC dataset. Our method significantly
outperforms state of the art.

Figure 1: Comparison of PDJ curves of elbows
and wrists on the FLIC dataset.



Diagnos<c	Experiments	

•  Term	Analysis	
– ConvNet	for	extrac<ng	informa<on	from	patches.	
– Stronger	pairwise	rela<ons	(IDPR).	

Method Torso Head U.arms L.arms U.legs L.legs Mean
Unary-Only 56.3 66.4 28.9 15.5 50.8 45.9 40.5
No-IDPRs 87.4 74.8 60.7 43.0 73.2 65.1 64.6

Full Model 92.7 87.8 69.2 55.4 82.9 77.0 75.0

Table 3: Diagnostic term analysis strict PCP results on the LSP dataset. The unary term
alone is still not powerful enough to get good results, even though it’s trained by a DCNN
classifier. No-IDPRs method, whose pairwise terms are not dependent on the image, can get
comparable performance with the state-of-the-art, and adding IDPR terms significantly boost
our final performance to 75.0%.



Diagnos<c	Experiments	

•  Cross-dataset	Generaliza<on.	
– Apply	model	trained	on	FLIC	to	Buffy	dataset.	

Method U.arms L.arms Mean
Ours* 96.8 89.0 92.9
Ours* strict 94.5 84.1 89.3

Yang [27] 97.8 68.6 83.2
Yang [27] strict 94.3 57.5 75.9
Sapp [21] 95.3 63.0 79.2
FLPM [11] 93.2 60.6 76.9
Eichner [5] 93.2 60.3 76.8

Table 3: Cross-dataset PCP results on Bu↵y
test subset. The PCP numbers are Bu↵y PCP
unless otherwise stated.

Figure 2: Cross-dataset PDJ curves on Bu↵y
test subset. Note that both our method and
DeepPose [23] are trained on the FLIC dataset.



Results	

•  The	last	row	shows	some	failure	cases	
–  large	foreshortening,	occlusions.	
–  distrac<ons	from	clothing	or	overlapping	people.		



How	about	occlusion?	

•  People	are	ooen	significantly	occluded	
– Parse	humans	when	there	is	significant	occlusion.	
– Predict	part	occlusion	&	localize	visible	parts.	



Key	Idea	–	Occlusion	Modeling	

•  Classical:	Cue	from	absence	of	evidence	for	body	
part.		

•  local	image	measurements	->	occlusion	cue	
–  Local	patch	around	the	occlusion	boundary	can	reliably	
provide	evidence	of	occlusion.	

Lower Arm:

Upper Arm:

Elbow:

Occluders:



Key	Idea	–	Flexible	Composi<ons		

•  Occlusions	ooen	occur	in	regular	paqerns.	
–  Connec<vity	prior:	the	visible	parts	of	human	tend	to	
consist	of	a	subset	of	connected	parts.	

–  Flexible	composi<ons:	all	the	possible	connected	sub-	
trees	of	the	graph.	

Full Graph Flexible Compositions



Flexible	composi<ons	(FCs)	

•  Chain	like	model	with	N	parts:	#	of	FCs	=	N(N+1)/2.	
– #	of	FCs	with	K	parts	=	N-K+1	

•  Exploit	part	sharing	for	efficient	inference.	
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Connec<vity	Prior	

•  Experimental	Verifica<on	
– 95.1%	of	the	people	instances	have	their	visible	
parts	form	a	connected	subtree.	

•  Hard	to	verify	that	some	isolated	pieces	of	
body	parts	belong	to	the	same	person.	



State	of	the	art	

•  Significantly	outperforms	alterna<ves	on	benchmark	
dataset:	
–  the	state	of	the	art	methods.	
–  and	our	base	model	(i.e.,	not	modeling	occlusion).	

Parsing	Occluded	People	by	Flexible	Composi<ons.		
Xianjie	Chen,	Alan	Yuille	
Computer	Vision	and	Paqern	Recogni<on	(CVPR),	2015.	



The	Graphical	Model	

•  Tree	model:		
–  The	pixel	loca<ons																			of	part	
–  Pairwise	rela<on	types				
–  Binary	occlusion	decoupling	variable									on	each	edge		

•  Unary	terms:	
•  Image	Dependent	Pairwise	Rela<onal	(IDPR)	Terms:	
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The	Graphical	Model	

•  Image	Dependent	Occlusion	Decoupling	(IDOD)	
Terms:	

•  Bias	Terms	for	decoupling	the	subtree																																
at	part				:	

•  The	model	score	for	each	flexible	composi<ons	
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Efficient	Inference	

•  Maximize	the	model	score	by	searching	
–  the	flexible	composi<on		
–  the	configura<ons	of	loca<ons	and	types	

•  Efficient	Inference	by	exploi<ng	part	sharing	
– Proved:	only	twice	as	expensive	as	searching	for	
the	en<re	object	(i.e.,	not	modeling	occlusion).		

(c⇤, l⇤, t⇤) = argmaxc,l,t F (l, t,Gc|I,G)



Learning	

•  Fully	supervised	learning	
– Annotated	part	loca<ons	/	part	occlusion.	
– Derive	pairwise	type	labels	by	clustering.	

•  Three	sets	of	parameters	
– Mean	rela<ve	posi<ons	r	of	different	pairwise	
rela<on	types,	by	K-means	clustering.	

– Parameters						of	image	dependent	terms,	by	
ConvNet.	

– Weight	parameters					,	by	linear	SVM.	
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Benchmark	Performance	

•  “We	Are	Family”	Dataset:	
–  Accuracy	of	Occlusion	Predic<on	(AOP)	
–  Percentage	of	Correct	Part	(PCP)	

Method AOP Torso Head U.arms L.arms mPCP
Ours 84.9 88.5 98.5 77.2 71.3 80.7

Multi-Person [11] 80.0 86.1 97.6 68.2 48.1 69.4
Ghiasi et. al. [17] 74.0 - - - - 63.6
One-Person [11] 73.9 83.2 97.6 56.7 28.6 58.6

Table 1: Comparison of PCP and AOP on the WAF dataset. Our method improves the
PCP performance on all parts, and significantly outperform the best previously published
result [11] by 11.3% on mean PCP, and 4.9% on AOP.



Diagnos<c	Experiments	

•  Term	Analysis	
– Flexible	composi<on	representa<on.	
– Cues	from	local	image	measurement	around	the	
occlusion	boundary	(IDOD	term).	

Method AOP Torso Head U.arms L.arms mPCP
Base Model [6] 73.9 81.4 92.6 63.6 47.6 66.1

FC 82.0 87.0 98.6 72.7 67.5 77.7
FC+IDOD 84.9 88.5 98.5 77.2 71.3 80.7

Table 1: Diagnostic Experiments PCP and AOP results on the WAF dataset. Using flexible
compositions (i.e., FC ) significantly improves our base model [6] by 11.6% on PCP and
8.1% on AOP. Adding IDOD terms (FC+IDODs, i.e., the full model) further improves our
PCP performance to 80.7% and AOP performance to 84.9%, which is significantly higher
than the state of the art methods.



Results	



Ques<ons	&	Sugges<ons	


