Human Pose Estimation in Static Images

Xianjie Chen Advisor: Prof. Alan Yuille

Overview

- Introduction
 - Background & Related work
- Our model
 - Key ideas
 - Model formulation
 - Inference and Learning
 - Relationship to other models
- Experiment comparison
 - Benchmark performance
 - Diagnostic experiments
- The follow-up work: Parsing occluded people

Introduction

• Estimate articulated 2D human pose from a single static image.

Introduction

- Fundamental task in computer vision.
 Activity recognition, Image understanding.
- Applications
 - Video surveillance / analysis.
 - Fashion item localization etc.

Related work

- Most work has been based on graphical model
 Pishchulin et. al., ICCV'13, CVPR'13
 - Yang & Ramanan, TPAMI'13.
- ConvNet based regression
 - DeepPose, CVPR'14.

Pros & Cons

- Graphical model
 - Pro: Explicit and flexible representation.
 - Con: Data independent pairwise relations
 - too loose to be helpful
 - too strict to model highly variable poses.
- ConvNet
 - Pro: Large learning capacity, good at extracting image info.
 - Con: Implicit and hard to diagnose.
- Our method
 - Extend graphical model by stronger pairwise relations.
 - Use ConvNet to extract info from local image patches.

Our method

- Graphical model: Image dependent pairwise relations (IDPRs).
 - Local image measurements can reliably predict the relative positions of all its neighbors (as well as detect the part).

Our method

- Stronger pairwise term
 - Local image measurements give input to the pairwise terms (as well as the unary terms).

Too strict

Too loose

Flexible & Helpful

Our method

- Require method to extract info from local image patches.
 - Part presence (appearance terms).
 - Pairwise part relations (IDPR terms).
- ConvNet is suitable.
 - Full supervised training.
 - We design a ConvNet to efficiently extract both info together.

State of the art

- Extend graphical model, and combine it with ConvNet.
 - Significantly outperforms the state of the art methods on benchmarks (LSP, FLIC).
 - Very good cross-dataset generalization (Buffy).
- The code is public online.

Articulated Pose Estimation by a Graphical Model with Image Dependent Pairwise Relations. **Xianjie Chen**, Alan Yuille Neural Information Processing Systems (NIPS), 2014.

The Graphical Model

- Tree model: $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
 - The pixel locations $\mathbf{l}_i = (x, y)$ of part $i \in \mathcal{V}$
 - Pairwise relation types $t_{ij} \in \{1, \ldots, T_{ij}\}, \forall (i, j) \in \mathcal{E}$
- Unary terms:

 $U(\mathbf{l}_i|\mathbf{I}) = w_i \phi(i|\mathbf{I}(\mathbf{l}_i);\boldsymbol{\theta})$

• Image Dependent Pairwise Relational (IDPR) Terms:

$$R(\mathbf{l}_{i},\mathbf{l}_{j},t_{ij},t_{ji}|\mathbf{I}) = \langle \mathbf{w}_{ij}^{t_{ij}}, \boldsymbol{\psi}(\mathbf{l}_{j}-\mathbf{l}_{i}-\mathbf{r}_{ij}^{t_{ij}}) \rangle + w_{ij}\varphi(t_{ij}|\mathbf{I}(\mathbf{l}_{i});\boldsymbol{\theta}) \\ + \langle \mathbf{w}_{ji}^{t_{ji}}, \boldsymbol{\psi}(\mathbf{l}_{i}-\mathbf{l}_{j}-\mathbf{r}_{ji}^{t_{ji}}) \rangle + w_{ji}\varphi(t_{ji}|\mathbf{I}(\mathbf{l}_{j});\boldsymbol{\theta})$$

 $\boldsymbol{\psi}(\Delta \mathbf{l} = [\Delta x, \Delta y]) = [\Delta x \; \Delta x^2 \; \Delta y \; \Delta y^2]^{\mathsf{T}}$

• The Full score: $F(\mathbf{l}, \mathbf{t} | \mathbf{I}) = \sum_{i \in \mathcal{V}} U(\mathbf{l}_i | \mathbf{I}) + \sum_{(i,j) \in \mathcal{E}} R(\mathbf{l}_i, \mathbf{l}_j, t_{ij}, t_{ji} | \mathbf{I}) + w_0$

Image dependent terms

- ConvNet for Image dependent terms:
 - Appearance terms $\phi(.|.; \theta)$
 - IDPR terms $\varphi(.|.; \theta)$

 $\phi(i|\mathbf{I}(\mathbf{l}_i);\boldsymbol{\theta}) = \log(p(c=i|\mathbf{I}(\mathbf{l}_i);\boldsymbol{\theta}))$ $\varphi(t_{ij}|\mathbf{I}(\mathbf{l}_i);\boldsymbol{\theta}) = \log(p(m_{ij}=t_{ij}|c=i,\mathbf{I}(\mathbf{l}_i);\boldsymbol{\theta}))$

Inference

- Image Dependent Terms
 - Fully convolutional inference by a single ConvNet.
 - Computations common to overlapping regions are shared.
- Graphical model inference $O(T^2LK)$
 - Dynamic programming -> Linear in # of parts.
 - Distance Transform -> Linear in # of locations.

Learning

- Fully supervised learning
 - Annotated part locations.
 - Derive pairwise type labels by clustering.
- Three sets of parameters
 - Mean relative positions r of different pairwise relation types, by K-means clustering.
 - Parameters θ of image dependent terms, by ConvNet.
 - Weight parameters \mathbf{w} , by linear SVM.

Implementation Detail

- Data Augmentation for ConvNet training
 - Local part patches (~20 parts) + Random background patches.
 - horizontally flipping + rotating -> ~1 million patches.
- Graphical model structure
 - Predefined tree structure.
 - Part size is roughly the size of the head.
- ConvNet structure is similar to the AlexNet.
 - Input: much smaller image patch (36 x 36 on the LSP)
 - Use the Caffe implmentation.

Relationship to other models

- Pictorial Structure (PS)
 - Recover by allowing one pairwise relation type.
- Yang and Ramanan's Mixtures-of-parts (MOP), TPAMI'13.
 - MOP defines different "types" of part by its relative position with respect to its parent.
 - Recover by only allowing parent to predict child.
- DeepPose, CVPR'14
 - ConvNet based regression.
 - Does not give confidence of the estimation. Assume given bounding box of human.

Relationship to other models

- Pishchulin et. al., Poselet Conditioned Pictorial Structures, CVPR'13
 - Focus on capturing dependencies between non-connected body parts by mid-level representation (poselets).
 - We focus on extracting more info (pairwise relations) from local image measurements.

• LSP

- Using Observer-Centric annotation.
- Percentage of Correct Parts (PCP)

Method	Torso	Head	U.arms	L.arms	U.legs	L.legs	Mean
Ours	92.7	87.8	69.2	55.4	82.9	77.0	75.0
Pishchulin et al. [16]	88.7	85.6	61.5	44.9	78.8	73.4	69.2
Ouyang et al. [14]	85.8	83.1	63.3	46.6	76.5	72.2	68.6
$DeepPose^*$ [23]	-	-	56	38	77	71	-
Pishchulin et al. [15]	87.5	78.1	54.2	33.9	75.7	68.0	62.9
Eichner&Ferrari [4]	86.2	80.1	56.5	37.4	74.3	69.3	64.3
Yang&Ramanan [26]	84.1	77.1	52.5	35.9	69.5	65.6	60.8

Table 1: Comparison of *strict* PCP results on the LSP dataset. Our method improves on all parts by a significant margin, and outperforms the best previously published result [1] by 5.8% on average. Note that DeepPose uses Person-Centric annotations and is trained with an extra 10,000 images.

- LSP
 - Using Person-Centric annotation.
 - Percentage of Correct Parts (PCP).
 - Thanks Pishchulin et. al. for comparing different methods.

Method	Torso	Head	U.arms	L.arms	U.legs	L.legs	mPCP
Ours	96.0	85.6	69.7	58.1	77.2	72.2	73.6
Tompson et al. NIPS'14	90.3	83.7	63.0	51.2	70.4	61.1	66.6
Pishchulin et al., ICCV'13	88.7	85.1	46.0	35.2	63.6	58.4	58.0
Wang& Li, CVPR'13	87.5	79.1	43.1	32.1	56.0	55.8	54.1

Table 1: Comparison of $strict\ {\rm PCP}\ {\rm results}$ on the LSP dataset using Person-Centric annotations.

- FLIC
 - Upper-body human poses.

PCP & Percentage of Detected Joints (PDJ)

Method	U.arms	L.arms	Mean
Ours	97.0	86.8	91.9
Tompson, NIPS'14	93.7	$80.9 \\ 52.1$	87.3
MODEC, CVPR'13	84.4		68.3

Table 2: Comparison of *strict* PCP results on the FLIC dataset. Our method significantly outperforms state of the art.

Figure 1: Comparison of PDJ curves of elbows and wrists on the FLIC dataset.

Diagnostic Experiments

- Term Analysis
 - ConvNet for extracting information from patches.
 - Stronger pairwise relations (IDPR).

Method	Torso	Head	U.arms	L.arms	U.legs	L.legs	Mean
Unary-Only	56.3	66.4	28.9	15.5	50.8	45.9	40.5
No-IDPRs	87.4	74.8	60.7	43.0	73.2	65.1	64.6
Full Model	92.7	87.8	69.2	55.4	82.9	77.0	75.0

Table 3: Diagnostic term analysis *strict* PCP results on the LSP dataset. The unary term alone is still not powerful enough to get good results, even though it's trained by a DCNN classifier. *No-IDPRs* method, whose pairwise terms are not dependent on the image, can get comparable performance with the state-of-the-art, and adding IDPR terms significantly boost our final performance to 75.0%.

Diagnostic Experiments

- Cross-dataset Generalization.
 - Apply model trained on FLIC to Buffy dataset.

Method	U.arms	L.arms	Mean
Ours*	96.8	89.0	92.9
Ours [*] strict	94.5	84.1	89.3
Yang [27]	97.8	68.6	83.2
Yang [27] strict	94.3	57.5	75.9
Sapp [21]	95.3	63.0	79.2
FLPM [11]	93.2	60.6	76.9
Eichner [5]	93.2	60.3	76.8

Table 3: Cross-dataset PCP results on Buffy test subset. The PCP numbers are *Buffy* PCP unless otherwise stated.

Figure 2: Cross-dataset PDJ curves on Buffy test subset. Note that both our method and DeepPose [23] are trained on the FLIC dataset.

Results

- The last row shows some failure cases
 - large foreshortening, occlusions.
 - distractions from clothing or overlapping people.

How about occlusion?

- People are often significantly occluded
 - Parse humans when there is significant occlusion.
 - Predict part occlusion & localize visible parts.

Key Idea – Occlusion Modeling

- Classical: Cue from absence of evidence for body part.
- local image measurements -> occlusion cue
 - Local patch around the occlusion boundary can reliably provide evidence of occlusion.

Key Idea – Flexible Compositions

- Occlusions often occur in regular patterns.
 - Connectivity prior: the visible parts of human tend to consist of a subset of connected parts.
 - Flexible compositions: all the possible connected subtrees of the graph.

Flexible compositions (FCs)

- Chain like model with N parts: # of FCs = N(N+1)/2.
 - # of FCs with K parts = N-K+1
- Exploit part sharing for efficient inference.

Connectivity Prior

- Experimental Verification
 - 95.1% of the people instances have their visible parts form a connected subtree.
- Hard to verify that some isolated pieces of body parts belong to the same person.

State of the art

- Significantly outperforms alternatives on benchmark dataset:
 - the state of the art methods.
 - and our base model (i.e., not modeling occlusion).

Parsing Occluded People by Flexible Compositions. **Xianjie Chen**, Alan Yuille Computer Vision and Pattern Recognition (CVPR), 2015.

The Graphical Model

- Tree model: $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
 - The pixel locations $\mathbf{l}_i = (x, y)$ of part $i \in \mathcal{V}$
 - Pairwise relation types $t_{ij} \in \{1, \ldots, T_{ij}\}, \forall (i, j) \in \mathcal{E}$
 - Binary occlusion decoupling variable γ_{ij} on each edge
- Unary terms: $A(\mathbf{l}_i | \mathbf{I}) = w_i \phi(i | \mathbf{I}(\mathbf{l}_i); \boldsymbol{\theta})$
- Image Dependent Pairwise Relational (IDPR) Terms:

$$R(\mathbf{l}_{i}, \mathbf{l}_{j}, t_{ij}, t_{ji} | \mathbf{I}) = \langle \mathbf{w}_{ij}^{t_{ij}}, \boldsymbol{\psi}(\mathbf{l}_{j} - \mathbf{l}_{i} - \mathbf{r}_{ij}^{t_{ij}}) \rangle + w_{ij} \varphi^{s}(t_{ij}, \gamma_{ij} = 0 | \mathbf{I}(\mathbf{l}_{i}); \boldsymbol{\theta}) + \langle \mathbf{w}_{ji}^{t_{ji}}, \boldsymbol{\psi}(\mathbf{l}_{i} - \mathbf{l}_{j} - \mathbf{r}_{ji}^{t_{ji}}) \rangle + w_{ji} \varphi^{s}(t_{ji}, \gamma_{ji} = 0 | \mathbf{I}(\mathbf{l}_{j}); \boldsymbol{\theta})$$

The Graphical Model

- Image Dependent Occlusion Decoupling (IDOD) Terms: D_{ij}(γ_{ij} = 1, l_i|I) = w_{ij}φ^d(γ_{ij} = 1|I(l_i); θ)
- Bias Terms for decoupling the subtree $T_j = (\mathcal{V}(T_j), \mathcal{E}(T_j))$ at part i: $B_{ij} = \sum_{k \in \mathcal{V}(T_i)} b_k$
- The model score for each flexible compositions $c \in C_{\mathcal{G}}$

$$F(\mathbf{l}, \mathbf{t}, \mathcal{G}_{c} | \mathbf{I}, \mathcal{G}) = \sum_{i \in \mathcal{V}_{c}} A(\mathbf{l}_{i} | \mathbf{I}) + \sum_{(i,j) \in \mathcal{E}_{c}} R(\mathbf{l}_{i}, \mathbf{l}_{j}, t_{ij}, t_{ji} | \mathbf{I}) + \sum_{(i,j) \in \mathcal{E}_{c}^{d}} (B_{ij} + D_{ij}(\gamma_{ij} = 1, \mathbf{l}_{i} | \mathbf{I}))$$

 $\mathcal{E}_{c}^{d} = \{(i, j) \in \mathcal{E} | i \in \mathcal{V}_{c}, j \notin \mathcal{V}_{c}\}$ is the edges that are decoupled.

Efficient Inference

- Maximize the model score by searching
 - the flexible composition
 - the configurations of locations and types

 $(c^*, \mathbf{l}^*, \mathbf{t}^*) = \arg \max_{c, \mathbf{l}, \mathbf{t}} F(\mathbf{l}, \mathbf{t}, \mathcal{G}_c | \mathbf{I}, \mathcal{G})$

- Efficient Inference by exploiting part sharing
 - Proved: only twice as expensive as searching for the entire object (i.e., not modeling occlusion).

Learning

- Fully supervised learning
 - Annotated part locations / part occlusion.
 - Derive pairwise type labels by clustering.
- Three sets of parameters
 - Mean relative positions r of different pairwise relation types, by K-means clustering.
 - Parameters θ of image dependent terms, by ConvNet.
 - Weight parameters \mathbf{W} , by linear SVM.

- "We Are Family" Dataset:
 - Accuracy of Occlusion Prediction (AOP)
 - Percentage of Correct Part (PCP)

Method	AOP	Torso	Head	U.arms	L.arms	mPCP
Ours	84.9	88.5	98.5	77.2	71.3	80.7
Multi-Person [11]	80.0	86.1	97.6	68.2	48.1	69.4
Ghiasi et. al. $[17]$	74.0	-	-	-	-	63.6
One-Person [11]	73.9	83.2	97.6	56.7	28.6	58.6

Table 1: Comparison of PCP and AOP on the WAF dataset. Our method improves the PCP performance on all parts, and significantly outperform the best previously published result [11] by 11.3% on mean PCP, and 4.9% on AOP.

Diagnostic Experiments

- Term Analysis
 - Flexible composition representation.
 - Cues from local image measurement around the occlusion boundary (IDOD term).

Method	AOP	Torso	Head	U.arms	L.arms	mPCP
Base Model [6]	73.9	81.4	92.6	63.6	47.6	66.1
FC	82.0	87.0	98.6	72.7	67.5	77.7
FC+IDOD	84.9	88.5	98.5	77.2	71.3	80.7

Table 1: Diagnostic Experiments PCP and AOP results on the WAF dataset. Using flexible compositions (*i.e.*, FC) significantly improves our base model [6] by 11.6% on PCP and 8.1% on AOP. Adding *IDOD* terms (FC+IDODs, *i.e.*, the full model) further improves our PCP performance to 80.7% and AOP performance to 84.9%, which is significantly higher than the state of the art methods.

Results

Questions & Suggestions