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1 Introduction to Regression

Consider learning directly the conditional distribution p(y|x).
This is often easier than learning the likelihood function p(x|y) and the prior p(y)

separately. This is because the space of y is typically much lower-dimensional than the
space of x. For example, if x is a 10 × 10 image (e.g., of a face, or a non-face) then this
space has an enormous number of dimensions while, by contrast, the output y takes only
binary values. It is much easier to learn distributions on lower-dimensional spaces.

The task of estimating y from x is called regression. It has a long history. Two hundred
years ago it was invented by Gauss to estimate the position of the planetoid Ceres (Gauss’s
father encouraged him to do work on this problem saying that there was more money in
Astronomy than in Mathematics).

In this lecture we address three different types of regression problem.
(I) Binary regression. Here y ∈ {±1}. We can specify a distribution to be of exponential

form (non-parametric ways of doing regression are possible, but we do not have time to
discuss them):

p(y|x;λ) =
eyλ·φ(x)

eλ·φ(x) + e−λ·φ(x)
.

Note that this is of form p(y|x;λ) = eyλ·φ(x)

Z[λ,x] , and because y is binary valued we can compute

the normalization term Z[λ, x] =
∑

y e
yλ·φ(x) = eλ·φ(x) + e−λ·φ(x).
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(II) Linear Regression. Here y takes a continuous set of values (we can extend this
directly to allow y to be vector-valued).

p(y|x, λ) =
1√
2πσ

e−(1/2σ
2)(y−λ·φ(x))2 ,

where λ includes the variance σ2.
This model assumes that the data can be expressed as y = λ ·φ(x) + ε, where λ ·φ(x) is

a linear predictor (i.e. it depends on linear coefficients λ) and where ε is a random variable
(i.e. noise) Gaussianly distributed with zero mean and variance σ2. To see this, write

p(y|x, ε) = δ(y−λ ·φ(x)+ε), p(ε) = 1√
2πσ

exp− ε2

2σ2 and compute p(y|x) =
∫
dεp(y|x, ε)p(ε).

(III) Non-Linear regression. This is an extension of binary regression.

p(y|x) =
1

Z
eM(y,g(x:λ)),

where M(·, ·) is a similarity measure and g(x : λ) is non linear in λ. This leads to non-linear
optimization problems. It is more powerful but more computationally intensive. Important
cases are multi-layer perceptrons and deep networks.

In both cases (I) and (II), the parameters λ can be estimated by Maximum Likelihood
(ML) and, as in previous lectures, this corresponding to minimizing a convex energy func-
tion and, in some cases (e.g., case II), there will be an analytic expression for the solution.
(Sometimes it is good to add a prior P (λ) and do MAP estimation, and sometimes a loss
function can be added also). In the case (III) the maximum likelihood cannot be solved
analytically. An algorithm will be necessary to solve a non-convex optimization problem.

2 Binary Regression

p(y|~x;~λ) =
ey
~λ·~φ(~x)

e~λ·~φ(~x) + e−~λ·~φ(~x)
.

Note that this corresponds to a decision rule ŷ = sign(~λ·~φ(~x)). Or, equivalently, ŷ(~x) =

arg max
y

y~λ · ~φ(~x). We obtain this here by taking the log-likelihood ratio log p(y=1|~x;~λ)
p(y=−1|~x;~λ)

.

To perform ML on this model we need to minimize:

F (~λ) = −
N∑
i=1

log p(yi|~xi;~λ) = −
N∑
i=1

yiλ · ~φ(~xi) +
N∑
i=1

log{e~λ·~φ(~x) + e−
~λ·~φ(~x)},

where X = {(~xi, yi) : i = 1, ..., N} is the training dataset.
It can be checked that F (~λ) is a convex function of ~λ (compute the Hessian, then use

Cauchy-Schwartz to show it is positive semi-definite.).
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The gradient of F (~λ) with respect to ~λ can be computed to be:

∂F

∂~λ
= −

N∑
i=1

yi~φ(~xi) +

N∑
i=1

∑
y∈{±1}

y~φ(~xi)p(y|~xi, ~λ). (1)

Hence the ML estimate – at ~̂λ, such that ∂F

∂~λ
(~̂λ) = 0 – balances the statistics of the data

(first term in equation (1) –with the model statistics (second term in equation (1) where
the expected over x is based on the data (i.e. regression only learns a probability model
for y and not for x).

Usually we cannot solve equation (1) analytically to solve for λ̂. Instead, we can solve
for λ by doing steepest descent (is there an analogy to GIS? check! yes, easy to derive
one). I.e.

~λt+1 = ~λt −∆{− log p(y|~x,~λ)}

= ~λt −∆{−
N∑
i=1

yi~φ(~xi) +
N∑
i=1

∑
y∈{±1}

y~φ(xi)p(y|~xi, ~λ)}.

2.1 Special Case of Binary Regression: the Artificial Neuron

An artificial model of a neuron is obtained by setting ~φ(~x) = (x1, ..., xM ), where the xi are
scalar values. This is illustrated in figure (1). In this case ~λ · ~φ(~x) =

∑M
i=1 λixi. The xi

are thought of as the input to the neuron and their strength in weighted by the synaptic
strength λi. The weighted inputs are summed and at the cell body, the soma, the artificial
neuron fires with probability p(y = 1|~x), given by:

p(y|~x) =
ey
~λ·~φ(~x)

e~λ·~φ(~x) + e−~λ·~φ(~x)

This is called integrate-and-fire. In practice, we can add another term λ0 to the summation
which acts as a threshold for firing (i.e. ~φ(~x) = (1, x1, ..., xM ) and ~λ = (λ0, λ1, ..., λM )). In
this case, ~λ · ~φ(~x) > 0, i.e.,

∑M
i=1 λixi > −λ0

3 Gaussian Linear Regression

Now, consider continuous linear regression with a Gaussian model. Here y is a scalar
output (a continuous number).

y = ~λ · ~φ(~x) + ε,
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Figure 1: An artificial model of a neuron. The inputs are x1, ..., xM at the dendrites,
the synaptic strengths are λ1, ..., λM , the cell body (soma) calculates the weighted sum of
the inputs

∑M
i=1 λixi and fires a spike down the axon with probability p(y = 1|x). This

provides input to another neuron..

where ε is a noise term which we can model with Gaussian: p(ε) =
1√
2πσ

e
−
ε2

2σ2 The

probability distribution of y is

p(y|~x,~λ) =
1√
2πσ

e
−

(y − ~λ · ~φ(~x))2

2σ2 .

Maximum Likelihood (ML) estimation minimizes:

F (~λ, σ) =
1

2σ2

N∑
i=1

(yi − ~λ · ~φ(~xi))
2 +N log

√
2πσ.

We can minimize, and obtain analytic expressions for ~̂λ and σ̂2 by differentiating F (~λ, σ)
with respect to ~λ and σ and setting the derivatives to be zero.

This gives an analytic solution for ~̂λ:

− 1

σ2

N∑
i=1

(yi − ~λ · ~φ(~xi))~φ(~xi) = 0

~̂λ = {
N∑
i=1

φ(~xi)φ(~xi)
T }−1

N∑
i=1

yi~φ(~xi),
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where T denotes vector transpose and −1 denotes matrix inverse. To see this, write F (~λ)
using coordinate summation for the dot product terms – i.e. (yi − ~λ · ~φb(~xi))2 = (yi −∑

a
~λa~φa(~xi))

2. Then the solution is λ̂a = {
∑N

i=1 φa(xi)φb(xi)}−1
∑N

i=1 yiφa(xi), where we
are taking the inverse of the matrix with row and column entries indexed by a and b.

We also get an analytic solution for σ̂:

σ̂2 =
1

N

N∑
i=1

(yi − ~̂λ · ~φ(~xi)).

Hence we use MLE to estimate the regression coefficients ~̂λ and the variance σ̂2.
This can be generalized to allow for vector-valued output.

3.1 L1 Variant of Linear Regression

The linear regression model assumes that the noise (i.e. ε) is additive zero-mean Gaussian.
But we know that Gaussians are non-robust to outliers. An alternative, which also leads
to a convex ML estimation problem, is to use a Laplacian distribution. This replaces the
quadratic, or L2, term in the exponent of the Gaussian by a modulus, or L1, term.

So set y = ~λ · ~φ(~x) + ε where P (ε) = 1
2σe
−|ε|/σ. Here σ is a parameter of the model, it

is not a standard deviation. (It is given by the integral
∫∞
0 e−ε/σdε = [−σe−ε/σ]∞0 = σ).

This gives:

P (y|~x;~λ, ~σ) =
1

2σ
e−|y−

~λ·~φ(~x)|/σ.

Estimating ~λ and σ by ML corresponds to minimizing the expression:

−
N∑
i=1

log p(yi|x;~λ) =
1

σ

N∑
i=1

|yi − ~λ · ~φ(~xi)|+N log(2σ).

~̂λ = arg min
~λ

n∑
i=1

|yi − ~λ · ~φ(~xi)|,

which requires minimizing a convex function which can be done by steepest descent or a
variety of iterative algorithms. The ML estimate of σ is given by (after differentiating the
ML criterion with respect to σ and setting the derivative to be 0):

~̂σ =
1

N

N∑
i=1

|yi − ~̂λ · ~φ(~xi)|.

This requires more computation than linear regression – because we can no longer solve
for λ analytically (i.e. by linear algebra) and instead must do steepest descent (but this
can be done very fast nowadays).
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It is generally far more robust to outliers than the linear model, which assumes that
the noise is Gaussian. This is because the L1 norm penalizes errors by their magnitude
while the L2 norm (used in Gaussians in the exponent) penalizes errors by the square of
their magnitude, which makes it much more sensitive to outliers (which will adjust the
parameters of the model by avoiding these huge penalties – imagine how your behaviour
would change if you paid a large penalty, like a month in jail, for parking a car in the
wrong place).

3.2 Linear regression examples

Let’s define a regression model in a d-dimensional space given by:

~λ · ~φ(~x) = ω0 + ω1x1 + · · ·+ ωdxd =
d∑
j=1

ωjxj + ω0

~λ = (ω0, ω1, · · · , ωd), ~φ(~x) = (1, x1, · · · , xd)

In one of the simplest cases we can have a linear model

y = ω1x+ ω0 + ε

with 1-dimensional x. In this case the dataset is XN = {(xi, yi) : i = 1..N}. Here yi

doesn’t denote a class label, but a desired continuous value, and i is the number of data
point in XN .

The error of the model given the dataset is:

E(ω1, ω0|XN ) =
N∑
i=1

{yi − (ω1x
i + ω0)}2

Minimizing the error with respect to the model parameters:
∂E

∂ω1
= 0,

∂E

∂ω0
= 0. The

solution is:

ω̂1 =

∑N
i=1 x

iyi − x yN∑N
i=1(x

i)2 −Nx2)

ω̂0 = y
N∑
i=1

(xi)2x
N∑
i=1

xiyi
N∑
i=1

(xi)2 −Nx2

where x =
∑N

i=1 xi/N and y =
∑N

i=1 yi/N denote the means.
A “richer” model can be used, but too high an order follow the data too closely, as

shown in Figure (2). E.g, a second order model is ~λ~φ(~x) = ω2xx+ ω1x+ ω0 + ε.
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Figure 2: Regression with two models: linear and 10-th order polynomial. The richer
model may be overfitting the data, i.e, will not generalize to new data generated from the
same distribution.

3.3 More abstract example

In linear regression we have a linear model ~λ · ~φ(x) = ω1x+ ω0. Differentiating the energy
(a quadratic function) w.r.t. ω1, ω0 and setting the derivatives to zero gives two equations.∑

i

yi = Nω0 + ω1

∑
i

xi

∑
i

yixi = ω0

∑
i

xi + ω1

∑
i

(xi)2

Expressed in linear algebra form as A~ω = ~d

A =

[
N

∑
t x

i∑
t x

i
∑

t(x
i)2

]
,

~ω =

[
ω0

ω1

]
,

~d =

[ ∑
t y

i∑
t y

ixi

]
solved to give ~ω = A−1~d.

More generally, for Polynomial Regression the model is
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g(xi|ωk, . . . , ω2, ω1, ω0) = ωK(xi)K + · · ·+ ω1x
i + ω0

with K + 1 parameters ωK , . . . , ω0.
Differentiating the energy gives K + 1 linear equations in K + 1 variables.

A~ω = ~d,

where A is a (k + 1) × (k + 1) dimensional matrix with components Akl =
∑

i(x
i)k(xi)l

and ~d is a (k + 1) dimensional vector with components dk =
∑

i y
i(xi)k.

We can write A = DTD, where D is anN×(K+1) dimensional matrix with components
Dil = (xi)l, and ~d = DT~y, where ~y is an N -dimensional vector with components yi = yi.
We can express D and ~y by:

D =

 1 x1 . . . xk1
1 x2 . . . xk2
. . . . . . . . . . . .

, ~y =


y1

y2

...
yN


and solve to get ~ω = (DTD)−1DT~r.

We must adjust the complexity of the model to the amount of data available. The
complexity of polynomial regression is number of parameters k, so one needs to pick k to
give best generalization error.
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4 Nonlinear Regression and Multilayer Perceptron

In nonlinear regression the output variable y is no longer a linear function of the regression
parameters plus additive noise. This means that estimation of the parameters is harder. It
does not reduce to minimizing a convex energy functions – unlike the methods we described
earlier.

The perceptron is an analogy to the neural networks in the brain (over-simplified). It
receives a set of inputs y =

∑d
j=1 ωjxj + ω0, see Figure (3).

Figure 3: Idealized neuron implementing a perceptron.

It has a threshold function which can be hard or soft. The hard one is ζ(a) = 1, if

a > 0, ζ(a) = 0, otherwise. The soft one is y = σ(~ωT~x) = 1/(1 + e~ω
T ~x), where σ(·) is the

sigmoid function.
There are a variety of different algorithms to train a perceptron from labeled examples.
Example: The quadratic error:

E(~ω|~xt, yt) = 1
2(yt − ~ω · ~xt)2,

for which the update rule is ∆ωtj = −∆ ∂E
∂ωj

= +∆(yt~ω · ~xt)~xt. Introducing the sigmoid

function rt = sigmoid(~ωT~xt), we have
E(~ω|~xt, yt) = −

∑
i

{
rti log yti + (1− rti) log(1− yti)

}
, and the update rule is

∆ωtj = −η(rt − yt)xtj , where η is the learning factor. I.e, the update rule is the learning
factor × (desired output – actual output)× input.

4.1 Multilayer Perceptrons

Multilayer perceptrons were developed to address the limitations of perceptrons (introduced
in subsection 2.1) – i.e. you can only perform a limited set of classification problems, or
regression problems, using a single perceptron. But you can do far more with multiple
layers where the outputs of the perceptrons at the first layer are input to perceptrons at
the second layer, and so on.

Two ingredients: (I) A standard perceptron has a discrete outcome, sign(~ω ·~x) ∈ {±1}.
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It is replaced by a graded, or soft, output zh = σ(~ωh ·~x) = 1/{1 + e−
∑d
j=1(ωhj ·xj+ω0j)}, with

h = 1..H. See figure (4). This makes the output a differentiable function of the weights ~ω.

Figure 4: The sigmoid function of (~ωh · ~x) tends to 0 for small (~a · ~x) and tends to 1 for
large (~a · ~x).

(II) Introduce hidden units, or equivalently, multiple layers, see figure (5).
The output is

yi = ~νTi z =
H∑
h

= νhizh + ν0i.

Other output function can be used, e.g. yi = σ(~νTi ~z).

Figure 5: A multi-layer perceptron with input x’s, hidden units z’s, and outputs y’s.

Many levels can be specified. What do the hidden units represent? Many people have
tried to explain them but it is unclear. The number of hidden units is related to the
capacity of the perceptron. Any input-output function can be represented as a multilayer
perceptron with enough hidden units.
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4.2 Training Multilayer Perceptrons

For training a multilayer perceptron we have to estimate the weights ωhj , νij of the per-
ceptron. First we need an error function. It can be defined as:

E[ω, ν] =
∑
i

{yi −
∑
h

νihσ(
∑
j

ωhjxj)}2

The update terms are the derivatives of the error function with respect to the param-
eters:

∆ωhj = − ∂E

∂ωhj
,

which is computed by the chain rule, and

∆νih = − ∂E

∂νih
,

which is computed directly.
By defining rk = σ(

∑
j ωkjxj), E =

∑
j(yi −

∑
k νikrk)

2, we can write

∂E

∂ωkj
=
∑
r

∂E

∂rk
· ∂rk
∂ωkj

,

where
∂E

∂rk
= −2

∑
j

(yi −
∑
l

νilrl)νik,

∂rk
∂ωkj

= xjσ
′(
∑
j

ωkjxj),

σ′(z) =
d

dz
σ(z) = σ(z){1− σ(z)}.

Hence,

∂E

∂ωhj
= −2

∑
j

(yi −
∑
l

νilrl)νikxkσ(
∑
j

ωkjxj){1− σ(
∑
j

ωkjxj)},

where
∑

j(yi −
∑

l νilrl) is the error at the output layer, νik is the weight k from middle
layer to output layer.

This is called backpropagation The error at the output layer is propagated back to the
nodes at the middle layer

∑
j(yi−

∑
l νilrl) where it is multiplied by the activity rk(1− rk)

at that node, and by the activity xj at the input.
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4.2.1 Variants

One variant is learning in batch mode, which consists in putting all data into an energy
function – i.e., to sum the errors over all the training data. The weights are updated
according to the equations above, by summing over all the data.

Another variant is to do online learning. In this variant, at each time step you select
an example (xt, yt) at random from a dataset, or from some source that keeps inputting
exmaples, and perform one iteration of steepest descent using only that datapoint. I.e. in
the update equations remove the summation over t. Then you select another datapoint at
random, do another iteration of steepest descent, and so on. This variant is suitable for
problems in which we keep on getting new input over time.

This is called stochastic descent (or Robins-Monroe) and has some nice properties
including better convergence than the batch method described above. This is because
selecting the datapoints at random introduces an element of stochasticity which prevents
the algorithm from getting stuck in a local minimum (although the theorems for this require
multiplying the update – the gradiant – by a terms that decreases slowly over time).

4.3 Critical issues

One big issue is the number of hidden units. This is the main design choice since the
number of input and output units is determined by the problem.

Too many hidden units means that the model will have too many parameters – the
weights ω, ν – and so will fail to generalize if there is not enough training data. Conversely,
too few hidden units means restricts the class of input-output functions that the multilayer
perceptron can represent, and hence prevents it from modeling the data correctly. This is
the classic bias-variance dilemma (previous lecture).

A popular strategy is to have a large number of hidden units but to add a regularizer
term that penalizes the strength of the weights, This can be done by adding an additional
energy term:

λ
∑
j,j

ω2
hj +

∑
i,h

ν2ih

This term encourages the weights to be small and maybe even to be zero, unless the
data says otherwise. Using an L1-norm penalty term is even better for this.

Still, the number of hidden units is a question and in practice some of the most effective
multilayer perceptrons are those in which the structure was hand designed (by trial and
error).

4.4 Relation to Support Vector Machines

In a perceptron we get yi =
∑

h νihzh at the output and at the hidden layer we get
zh =

∑
j σ(
∑

h ωhjxj) from the input layer.
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Support Vector Machines (SVM) can also be represented in this way.

y = sign(
∑
µ

αµyµ~xµ · ~x),

with ~xµ · ~x = zµ the hidden units response, i.e, y = sign(
∑

µ αµyµzµ).
An advantage of SVM is that the number of hidden units is given by the number of

support vectors. {αµ} is specified by minimizing the primal problem, and there is a well
defined algorithm to perform this minimization.
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