Probabilities and Decision Theory

We now describe a principled approach for combining the response of many
features/filters to perform tasks like stereo or motion estimation. This
approach is based on decision theory. The section also illustrates the
importance of knowing whether filter responses, hence visual cues for the task,
are dependent or independent.

We introduce the probabilities of filter responses by describing a classical
experimental finding about natural image statistics. Intuitively the intensities of
neighboring pixels tend to be similar. This intuition can be captured by taking

derivative filters of the image, i.e., % or %, and plotting their probability

distribution, or histogram. Surprisingly these probability distributions are very
similar from image to image [155]. This can be verified from interactive demo
(3a) on natural image statistics. Interactive demo (3b) explores the statistics of
edge detection and illustrates decision theory.



Edge Detectors/ Texture Detectors and Decisions

Consider the tasks of deciding whether an image patch at position x contains
an edge by which we mean the boundary of an object or a strong texture
boundary (e.g., like the writing on a tea shirt). The previous section showed
that some Gabor filters are tuned (i.e. respond strongly) to edges at specific
orientations. But such filters will also response to other stimuli such as texture
patterns, so how can we decide if their response is due to an edge? The
simplest way is to threshold the response so that an edge, at a specific
orientation, is signalled if the filter response is larger than a certain threshold
value. But what should that threshold be? How do we do a trade-off to
balance false negative errors, where we fail to detect a true edge in the image,
with false positive errors where we incorrectly label a pixel as an edge? Also
each filter in a filterbank contains some evidence about the presence of an
edge, so how can we combine their evidence in an optimal manner? How can
we formulate the intuition that the evidence from some filters give independent
evidence while others do not.



Decision Theory

Decision theory gives a way to address these issues. The theory was developed
as a way to make decisions in the presence of uncertainty. In this section we
develop the key ideas of decision theory by addressing the specific task of edge
detection. In the next section we give a more general treatment. We will only
treat the case when we are detecting edges based on local evidence in the
image. Later in this chapter we will extend to when we can use non-local, or
contextual information. Interactive demo (3b) on decision theory and edge
detection illustrates most of the ideas in these two sections.



Filters

To start with, we consider the evidence for the presence of an edge using a
single filter (.) only. We assume we have a benchmarked dataset so that at
each pixel we have intensity /(x) and a variable y(x) € {£1} (where y =1
indicates an edge, and y = —1 does the opposite). We apply the filter to the
image to get a set of filter responses f(/(x)). If the filter is tuned to edges,
then the response f(/(x)) is likely to be higher if an edge is present than if not.
This requires selecting a filter (x), such as the modulus of the gradient of the

intensity |V/(x)| = %2 + %2 (since |VI(x)| is likely to be large on edges
and small off edges).



Conditional Probability Distributions

To quantify this, we use the benchmarked dataset to learn conditional
probability distributions for the filter response f(/) conditioned on whether
there is an edge or not:

P(f(Dly = 1), P(f(N]ly = =1).

Each distribution is estimated by computing the histogram of the filter
response by counting the numbers of times the response occurs within one of
N equally spaced bins and normalizing by dividing by the total number of
responses. The histograms for P(f(I)|ly = 1) and P(f(l)|y = —1) are
computed from the filter responses on the points labeled as edges

{f(I(x)) : y(x) = 1} and not-edges {f(/(x)) : y(x) = 1} respectively. Typical
conditional distributions are shown in figure (21).



Figure for Conditional Distributions
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Figure 21: The probability of filter responses conditioned on whether the filter is on or
off an edge — P(fly = 1), P(f|y = —1), where f(x) = [VI(x)|. Left panel: the
probability distributions learnt from a dataset of images. Right panel: the smoothed
distributions after fitting the data to a parametric model.



Statistical Edge Detection

We can now perform edge detection on an image, see figure (22). At each pixel
x we compute f(/(x)) and calculate the conditional distributions

P(f(I(x))|ly = 1) and P(f(I(x))|ly = —1). These distributions give local
evidence for the presence of edges at each pixel. Note, however, that local
evidence for edges is often highly ambiguous, see figure (23). Spatial context
can supply additional information to help improve edge detection, as discussed
in a later section, and so can high-level knowledge (e.g., by recognizing the
objects in the image).



Log-likelihood ratio

The log-likelihood ratio log P Xﬂl{ li gives evidence for the presence of an

edge in image | at position x hls ratlo takes large positive values if
P(f(I(x))ly =1) > P(f(I(x))|y = —1) (i.e. if the probability of the filter
response is higher given an edge is present) and large negative values if
P(f(I(x))ly = —=1) > P(f(/(x))|ly = 1). So a natural decision criterion is
decide that an edge is present if the log-likelihood ratio is greater than zero and
that otherwise there is no edge. This can be formulated as a decision rule a.(x):

) =1 if log LUy =1) P(f(I(x))ly = 1)
R GUO = POy = 1)

>0, a(x)=—1, if log <0.

This can expressed, more compactly, as

P(f(I(x))ly =1)
PGy = -1)

a(x) = arg én{aix ylog



Statistical Edge Detection Figure

Figure 22: The input image and its groundtruth edges (far left and left). The

derivative dI/dx of the image in the x direction (center). The probabilities of the local

filter responses P(f(I(x))|y = 1) (right) and P(f(/(x))]y = —1) (far right) have their

biggest responses on the boundaries and off the boundaries respectively, hence the

log-likelihood ratio log PEUCDIy=1) gives evidence for the presence of edges.
P(f(1(x))ly=—1)



Ambiguities in Edge Detection

Note that this rule gives perfect results (i.e. is one hundred percent correct) if
the two distributions do not overlap, i.e. if

P(F(I(x))ly = 1)P(f(I(x))|ly = —1) =0 for all I. In this case it is impossible
to confuse the filter responses to the different types of stimuli. But this
situation is very unlikely to happen. Now consider a more general log-likelihood
ratio test which depends on a threshold T, this gives a rule:
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By varying T we get different types of mistakes. We can distinguish between
the false positives which are non-edge stimuli which the decision rule
mistakenly decides to be an edge, and false negatives which are edge stimuli
which are mistakenly classified as not being edges. Increasing the threshold T
reduces the number of false positives but at the cost of increasing the number
of false negatives, while decreasing T has the opposite effect.



Ambiguity of Edges Figure

Figure 23: The local ambiguity of edges. An observer has no difficulty in detecting all
the boundary of the horse if the full image is available (left). But it is much more
difficult to detect edges locally (other panels).



Decision Theory and Trade-Offs

Making a decision requires a trade-off between these two types of errors. Bayes
decision theory says this tradeoff should depend on two issues. Firstly, the prior
probability that the image patch is an edge. Statistically most image patches
do not contain edges, so we would get a small number of total errors (false
positives and false negatives) by simply deciding that every image patch is
non-edge. This would encourage us to increase the threshold T (to —oo so
that every image patch would be classified as non-edge). Secondly, we need to
consider the loss if we make a mistake. If our goal is to detect edges, then we
may be willing to tolerate many false positives provided we keep the number of
false negatives small. This means we choose a decision rule, by reducing the
threshold T, so that we detect all the real edges but also output “false edges”,
which we hope to remove later by using contextual cues (see the next section).
Later we show how this approach can be justified using the framework of
decision theory.



Combining Multiple Cues for Edge Detection

Now we consider combining several different filters {f;(.)|i =1, ..., M} to detect
an edge by estimating the joint response of all the filters

P(fi, fa,...|y) = P({fi(I(x))}y) conditioned on whether the image patch / at
x is an edge y =1 or not an edge y = —1. This leads to a decision rule:

e max vlog PARUCNY =1)
arll6) =g s, Y8 piggcany = 1 -

This approach has two related drawbacks. Firstly, the joint distributions require
a large amount of data to learn particularly if we represent the distributions by
histograms. Secondly, the joint distributions are “black-boxes” and give no
insight into how the decision is made. So it is better to try to get a deeper
understanding of how the different filters contribute to making this decision, by
studying whether they are statistically independent.



Combining Cues with statistical independence

The response of the filters is statistically independent if:
P{A(I())}y) = [T P(HU/(x))ly) for each y

This implies that the distributions P(fi(/(x))|y) can be learnt separately (which
decreases the amount of data) and also implies that the log-likelihood test can
be expressed in the following form:

. P(fi(1(x))ly = 1)
o) =g, max, (2198 Bigirogy = —1y )

Hence the decision rule corresponds to summing the evidence (the log-likelihood
ratio) for all of the filters to determine whether it is above or below the
threshold T. This means that each filter gives a “vote”, which can be positive
or negative, and the decision is based on the sum of these votes. This process
is very simple so it is easy to see which filters are responsible for the decision.




Combining cues with conditional independence

But very few filters are statistically independent. For example, the response of
each filter will depend on the total brightness of the image patch and so all of
them will response more to a “strong” edge than to a “weak” edge. This
suggests a weaker independence condition known as conditional independence.
Suppose we add an additional filter f(/(x)) which, for example, measures the
overall brightness. Then it is possible that the other filters are statistically
independent conditioned on the value of f(/(x)):

PTG} (1)) 1y) = P(fo(1(x) \y)HP x))fo(1(x)); ¥)

This requires only representing(learning) the distributions

P(fi(10))Ifo(/(x)), y) and P(fo(1(x))ly).



Combining cues with conditional independence

It also leads to a simply decision rule:

PRIy = 1) AUy =1)
arlx) = arg max Y1108 g ialy = 1) T2 108 P(f CNBI0)).y = 1)

It has been argued [137] that methods of this type can be implemented by
neurons and may be responsible for edge detection. Note that the arguments
here are general and do not depend on the type of filters f;(.) or whether they
are linear or non-linear. It has, for example, been suggested that edge detection
is performed using the energy model of complex cells [118].



Classification for other visual tasks

The same approach can be applied to other visual tasks. For example, consider
using local filter responses to classify whether the local image patch at x is
“sky”, “vegetation”, “water’, “road”, or “other”, see figure (24). We denote
these by a variable y € Y (e.g., where

Y = {"sky" " vegetation” " water" " road" , or" other" }. We choose a set of
filters {fi(/(x))} which are sensitive to texture and color properties of image
patches. Then, as before, we learn distributions P({f;(/(x))}|y) for y € Y. We
select a decision rule of form:

a(I(x)) = arg max P({f(I())HY) T,

where T, is a set of thresholds (which can be derived from decision theory).
Experiments on images show that this method can locally estimate the local
image class with reasonable error rates for these types of classes [88] and
computer vision researchers have improved these types of results using more
sophisticated filters.



Classifying other image classes

Figure 24: Classifying local image patches. The image shows the groundtruth, see
[119]. Certain classes — sky, grass, water — can be classified approximately from small
image patches.



Context

We stress that the theories described in this section model edge detection
without context. There are two types of context we will consider in this
chapter. The first uses spatial context and is low- or mid-level since it depends
only on generic properties of images and surfaces. It exploits the idea that
edges in natural images are often geometrically regular and co-linear. The
second type of context, is high-level and is object specific. For example, if we
detect a face in an image then our knowledge about faces enables us to detect
the boundaries of a face better than if we rely only on local edge cues. This
second type of context is out of scope of this chapter but is briefly discussed at
the end of these lectures.



