
Divisive Normalization

An important example is the use of probabilistic models [170] to account for
divisive normalization. This is a mechanism whereby cells mutually inhibit one
another, effectively normalizing their responses with respect to stimulus inputs.
Originally developed to explain non-linear responses to contrast in V1 [59],
divisive normalization has been proposed as a basic cortical computation that
underlies various effects of context (see next section), as well as higher-level
processes such as attention [20].
The probabilistic approach give a theoretical justification for divisive
normalization in V1. The main idea is that filters with similar preferences for
orientation representing nearby spatial locations in a scene have striking
statistical dependencies, which can be removed by divisive normalization.
Specifically, if we plot the statistics of two linear filters fc , fs (center and
surround) then the magnitudes of fc , fs are coordinated in a straightforward
way, which has a characteristic shape of a Bow-Tie.



Modeling Divisive Normalization using hidden variables

This can be modeled by assuming there are hidden variables ν which affect
both responses and hence induces correlation between the responses. E.g., ν
could represent the local average image intensity which could affect the
response of both filters but, after the filter response could be made
independent by conditioning on the average intensity. Suppose ν has a prior
distribution P(ν) = ν exp{−ν2/2} for ν ≥ 0. We have a pair of filters
{li : i = 1, 2} which are related to gaussian models {g1 : i = 1, 2}. Then we
can model the activation of the set of filter responses:

P(l1, l2) =

∫
dνP(ν)

2∏
i=1

P(li |ν, gi ))P(gi ), (19)

where P(li |ν, gi ) = δ(li − νgi ). In this model the filter responses are generated
by independent processes, g1, g2, but then are multiplied by the common factor
ν. This is illustrated in figure (25).



Figure for Divisive Normalization Model
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Figure 25: Left Panel: The graphical structure of the divisive normalization model.
The filter responses l1, l2 are generated from stimuli g1, g2 respectively and by the
common factor ν. The distributions of l1, l2 are factorized if we condition on ν. Right
Panel: But if we integrate out ν then almost all the variables become dependent as
reflected by the complexity of the graph structure.



Divisive Normalization Model

In particular, for each filter we can compute P(gi |l1, l2). After some algebra,
this is computed to be:
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where l =
√
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1 + l2

2 , and B(., .) is a Bessel’s function. To get intuition, note
that g1 = l1/ν and g1 = l1/ν. So if ν is small then |l1| and |l2| are likely to be
small together, while if ν is large, then |l1| and |l2| are both likely to be large.
Assume that the goal of a model unit is to estimate the gi from the observed
filter responses {li : i = 1, 2}, which gives the non-linear response of the cell. It
follows, from analysis above, that

E(g1|l1, l2) ∝ sign{l1}
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The
√
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2 + k term sets the gain and performs the divisive normalization.



Application to the Tilt Illusion

The model has also been applied to explain the classic tilt illusion in
perception [152, 136]. In the “simultaneous” tilt illusion, a set of vertically
oriented lines appears to tilt right when surrounded by an annulus of lines tilted
left–an effect called “repulsion”. But for large differences between the center
orientation and surround (tilted left), the center vertical lines can appear to tilt
left–an effect called “attraction”. In their model, the population of neurons
responding to the surround tilted lines contribute to divisive normalizing of the
neurons responding to the center stimulus. This results in a change of their
neural tuning curves which, together with the degree of coupling between
center and surrounds, accounts for repulsion and attraction.
The suppressive effect of surround contrast on a central region is an example of
local spatial context.


