
Boltzmann Machine

A.L. Yuille — draft in progress

Abstract

1. Introduction

The Boltzmann Machine (Hinton and Sejnowski) is a method for learning the weights of a probability distribu-
tion assuming that a subset of nodes (input nodes) are observed and the remainder are hidden.

Gibbs Distribution

The probability of the system is defined by a Gibbs distribution with energy E(~S) = −1
2

∑
ij ωijSiSj and

distribution:
P (~S) =

1

Z
exp{−E(~S)/T}. (1)

We divide the nodes into two classes Vo and Vh, which are the observed (input) and hidden nodes respectively.
We use ~So and ~Sh to denote the states of the observed and the hidden nodes respectively. The components of ~So
and ~Sh are {Si : i ∈ Vo} and {Si : i ∈ Vh} respectively. Hence ~S = (~So, ~Sh).

Hence we can re-express the distribution over the states as:

P (~So, ~Sh) =
1

Z
exp{−E(~S)/T}. (2)

The marginal distribution over the observed nodes is

P (~So) =
∑
~Sh

1

Z
exp{−E(~S)/T}. (3)

We assume that we can estimate a distribution R(~S0) of the observed nodes (see more in a later section). Then
the goal of learning is to adjust the weights ~ω of the model (i.e. the {ωij}) so that the marginal distribution P (~So)

of the model is as similar as possible to the observed model R(~S0). This requires specifying a similarity criterion
which is chosen to be the Kullback-Leibler divergence:

C(~w) =
∑
~So

R(~So) log
R(~So)

P (~So)
(4)

We will discuss in a later section how this relates to the standard maximum likelihood criterion for learning
distributions (it is effectively the same).

The Boltzmann Machine adjusts the weights by the iterative update rule:

wij 7→ wij + ∆wij (5)

∆wij = −δ ∂C
ωij

(6)

∆wij = − δ
T
{< SiSj >clamped − < SiSj >} (7)

Here δ is a small positive constant. The derivation of the update rule is given in a later section. The way to compute
the update rule is described in the next section.
< SiSj >clamped and < SiSj > are the expectation (e.g., correlation) between the state variables Si, Sj when

the data is generated by the clamped distribution R(~So)P (~Sh|~So) and by the distribution P (~So, ~Sh) respectively.
The conditional distribution P (~Sh|~So) is the distribution over the hidden states conditioned on the observed states.
So it is given by P (~Sh|~So) = P (~Sh, ~So)/P (~So).

The learning rule, equation (7), has two components. The first term< SiSj >clamped is Hebbian and the second
term < SiSj > is anti-Hebbian (because of the sign). This is a balance between the activity of the model when
it is driven by input data (i.e. clamped) and when it is driven by itself. The algorithm will convergence when the
model accurately fits the data, i.e.. when < SiSj >clamped=< SiSj > and the right hand side of the update rule,
equation (7), is zero.

What is the observed distribution R(~So)? In fact, we do not know R(~So) exactly and so we approximate it by
the training data {~Sµo ;µ = 1, ..., N}. This is equivalent to assuming that

R(~S) =
1

N

N∑
µ=1

δ(~So − ~Sµo) (8)

.
(We return to this later when we show the relationship to maximum likelihood learning).

1.1. Estimating the < SiSj >

The main difficulty of the learning rule for the Boltzmann Machine is how to compute < SiSj >clampaed and
< SiSj >.

To do this, it is natural to use Gibbs sampling. Recall from earlier lectures that the stochastic update rule
for neurons is performing Gibbs sampling – i.e. selecting a neuron i at random, and then sampling Si from the
conditional distribution P (Si|~S/i).

By performing Gibbs sampling multiple times on the distribution P (~So, ~Sh) we obtain M samples ~S
1
, ..., ~S

M
.

Then we can approximate < SiSj > by:

< SiSj >≈
1

M

M∑
a=1

Sai S
a
j (9)

Similarly we can obtain samples fromR(~So)P (~Sh|~So) (the clamped case) by first generating samples ~So
1
, ..., ~So

M

from R(~S0) and then converting them to samples

~S
1
, ..., ~S

M
(10)

where ~S = (~So
i
, ~Sh

i
), and ~Sh

i
is a random sample from P (~Sh|~So) (performed by Gibbs sampling).

How do we sample from R(~So)? Recall that we only know samples {~Sµo ;µ = 1, ..., N} (the training data).
Hence sampling from R(~So) reduces to selecting one of the training examples at random.

The fact that the Boltzmann Machines uses Gibbs sampling is a big limitation. If the model is complicated –
i.e. there are many hidden nodes and weights ωij – then Gibbs sampling takes a very long time to converge. This

means the calculating the learning rule, equation (7), becomes impractical. We can approximate the expectations
< SiSj > by equations (9,10), but these approximations can be extremely bad.

This means that Boltzmann Machines are of limited effectiveness. In a later section we discuss Restricted
Boltzmann Machines (RBMs) for which we can perform efficient sampling and hence estimate the < SiSj > and
< SiSj >clamped effectively. RBMs are used as components to build one type of deep neural networks.

Note that in some accounts of Boltzmann Machines say that the BMs have to run to reach thermal equilibrium.
This is equivalent to saying that Gibbs sampling yields samples from (~So, ~Sh) (and from P (~Sh|~So)).

2. Derivation of the BM update rule

To justify the learning rule, equation (7), we need to take the derivative of the cost function ∂C(~ω)/∂ωij .

∂C

∂ωij
= −

∑
~So

R(~So)

P (~So)

∂P (~So)

∂ωij
(11)

Expressing P (~So) = 1
Z

∑
~Sh

exp{−E(~S)/T}, we can express ∂P (~So)
∂ωij

in two terms:

1

Z

∂

∂ωij

∑
~Sh

exp{−E(~S)/T} − 1

Z

∑
~Sh

exp{−E(~S)/T)}∂ logZ

∂ωij
(12)

which can be re-expressed as:

−1

T

∑
~Sh

SiSjP (~S) + {
∑
~Sh

P (~S)
1

T

∑
~S

SiSjP (~S) (13)

Hence we can compute:

∂P (~So)

∂ωij
=
−1

T

∑
~Sh

SiSjP (~S) + P (~Sh)
1

T

∑
~S

SiSjP (~S) (14)

Substituting equation (14) into equation (11) yields

∂C

∂ωij
=

1

T

∑
~Sh,~So

SiSj
P (~S)

P (So)
R(~So)−

1

T
{
∑
~So

R(~So)}
∑
~S

SiSjP (~S) (15)

Which can be simplified to give:

∂C

∂ωij
=

1

T

∑
~S

SiSjP (~Sh|~So)R(~So)−
1

T

∑
~S

SiSjP (~S) (16)

3. How does the Boltmann Machine relate to Maximum Likelihood Learning

They are equivalent.
The Kullback-Leibler criterion, equation (4), can be expressed as

C(~ω) =
∑
~S

R(~So) logR(~So)−
∑
~S

R(~So) logP (~Sh|~So) (17)

Only the second term depends on ~ω so we can ignore the first (since we want to minimize E(~ω) with respect to
~ω).

Using the expression for R(~So) in terms of the training data, equation (8), we can express the second term as:

− 1

N

∑
~So

1

N

N∑
a=1

δ(~So − ~Sao) logP (~So) (18)

− 1

N

1

N

N∑
a=1

logP (~Sao) (19)

This is precisely, the Maximum Likelihood criterion for estimating the parameters of the distribution P (~So).
More generally, estimating the parameters of a distribution by Maximum Likelihood can always be expressed

in terms of minimizing a Kullback-Leibler divergence. Why do we care? Because it gives a richer way to think
of Maximum Likelihood (ML). The standard justification for ML to say that it is an asymptotically consistent
estimator of the model parameters ~ω provided that the data has really been generated by the probability model.
This is ok, but it gives no justification for using ML if are not using the right distribution (i.e. if the data is generated
by something else). But the Kullback-Leibler formulation says that you are learning the best distribution that your
model allows (“best in the sense of K-L divergence). So this justifies using ML even if the distribution is only an
approximation to the true model that has generated the data (which you probably never know).

4. Restricted Boltzmann Machines

RBMs are a special case of Boltmann Machines where there are no weights connecting the hidden nodes to
each other. In this case the energy can be expressed as:

E(~S) =
∑

i∈Vo, j∈Vh

ωijSiSj . (20)

This means that the conditional distributions P (~Sh|~So) and P (~So|~Sh) can both be factorized:

P (~So|~Sh) =
∏

i ∈ VoP (Si|~Sh), P (~Sh|~So) =
∏

j ∈ VhP (Sj |~So) (21)

where, for i ∈ Vo, P (Si|~Sh) = 1
Zi

exp{−(1/T)Si(
∑

j∈Vh ωijSj)} with Zi being the normalization constant

Zi =
∑

Si∈{0,1} exp{−(1/T)Si(
∑

j∈Vh ωijSj)} – and with similar expressions for P (Sj |~So) for j ∈ Vh.

These factorized forms means that we can sample from P (~So|~Sh) and P (~Sh|~So) very rapidly (e.g., by sam-
pling from simple distributions like P (Si|~Sh)). This makes learning fast and practical. To estimate the terms
< SiSj >clamped we only need to sample from P (~Sh|~So), which is very fast. To estimate the terms < SiSj >, we
can sample from P (~So, ~Sh) by alternatively sampling from P (~So|~Sh) and P (~Sh|~So). This is longer, because we
have to do this multiple times until the sampling has converged (but it is much faster than doing Gibbs sampling
for full Boltzmann Machines when there are weights connecting the hidden nodes).

This means that is practical to learn RBMs. But this is limited because RBMs are too simple to perform useful
tasks. The solution (Hinton 2006) is to learn a hierarchy of RBMs, or a deep network. The strategy is simple. You
train one RBM first using the training data. Then you train a second RBM which uses the output of the first RBM
as input. Then you train a third RBM and so on. The idea is that these higher level RBMs compensate for the fact
that there are no weights between output nodes of the RBMs.

