Modeling Vision as Bayesian Inference: Is it Worth the Effort?

Alan L. Yuille. UCLA.

Co-Director: Centre for Image and Vision Sciences.

Dept. Statistics

Joint Appointments:

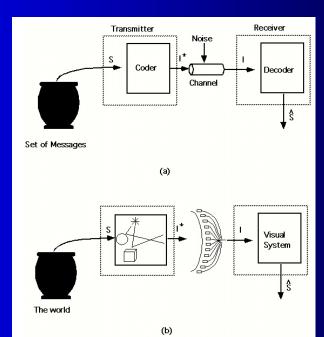
Computer Science, Psychology

What is the purpose of Vision?

 To extract information about the world from the input images.

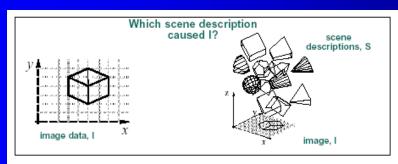
This is a decoding problem: inverse

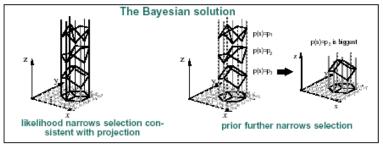
inference.



What is Bayes? Inverse Inference.

- Inverse Inference/Image decoding:
- Posterior P(S|I) = P(I|S) P(S)/P(I)
- Likelihood P(I|S), Prior P(S).





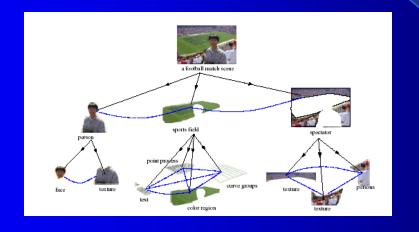
How does this relate to the Brain?

 Marr's computation level. Information Processing.

- Bayes derives from Decision Theory same roots as signal detection theory and ideal observers.
- Plausible neuronal implementations.

The Challenge of Bayes

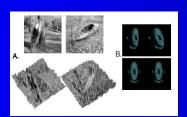
• What are P(I|S) and P(S) for realistic images?

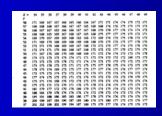


- Probability Distributions on Structured Representations (Graphs/Grammars).
- Considerable progress in many communities;
 NIPS, Machine Vision, Machine Learning, Artificial
 Intelligence. Natural Language processing...

Why is Bayes Complicated?

- It is complicated because of the difficulty of the vision problem.
- In information processing terms images are extremely complex and ambiguous.





 Vision is much more complicated – by many orders of magnitude – than any "solved" inverse inference problem.

Bayes Research Program

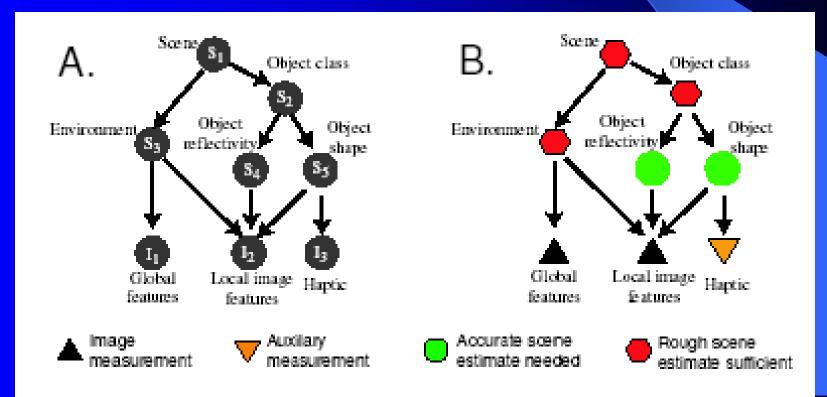
- This program is to model the world with increasingly realistic distributions P(I|S) and P(S).
- Relate performance on these models to Psychophysics experiments.
- Speculate (test?) neuronally plausible implementations of these models.

Brief History: 1980's.

- Convergent strands:
- Signal Detection Theory, Ideal Observers.
- Pattern Theory and Bayesian Inference.
- Energy Function formulations.
- Computer Graphics Psychophysics.
- Axis of Bayes: Brown, Harvard, MIT?

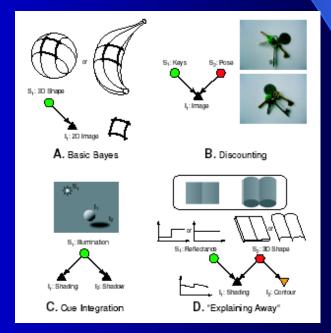
Probabilities defined on Graphs

 Graphs represent the causal generation of images. (Pearl 1988).



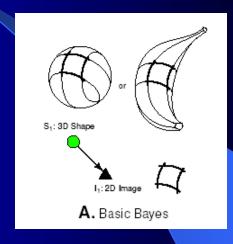
Taxonomy of Vision Tasks.

- Symbolic taxonomy.
- Kersten, Mamassian, Yuille (2004). 150
 references...



Basic Bayes

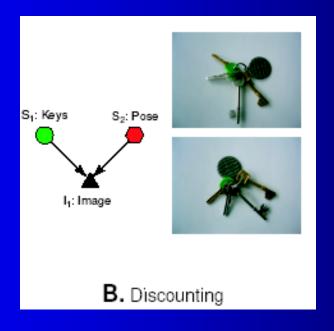
- Bulthoff and Mallot (1988).
- The perception of shape and depth from visual cues.



 Trade-off between data-driven and priordriven (e.g. Weiss et al 1997).

Discounting and Task Dependence

• What do you care about? The identity of the keys? Their location? Their materials?



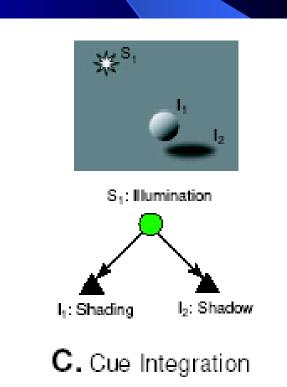
Cue Integration

 How to combine cues? Clark and Yuille 1990 (Amazon says "1 copy still available!").

Bulthoff and Yuille 1991.

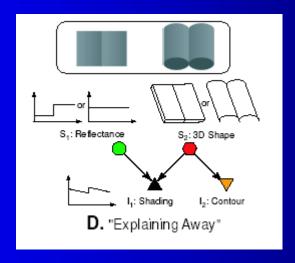
Weak coupling or strong coupling.

• Knill's talk.



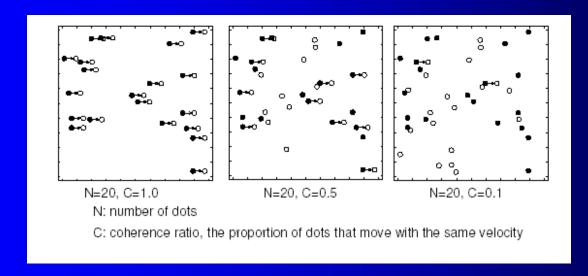
Perceptual "Explaining away"

- Knill and Kersten 1991.
- Small changes of the boundary shape can explain away the intensity changes as being due to geometry and not to materials.



Ideal versus Bayes Ideal

- Ideal for the experiment? Or Ideal for real images?
- Random Dot Kinematograms (RDK's).

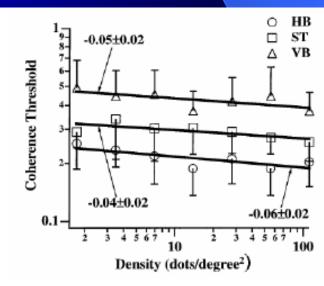


Ideal for the experiment?

 Barlow&Tripathy (1997), Lu&Yuille (2006) derived an Ideal Observer model for these stimuli.

This model predicts trends, but humans are

much worse than the ideal.



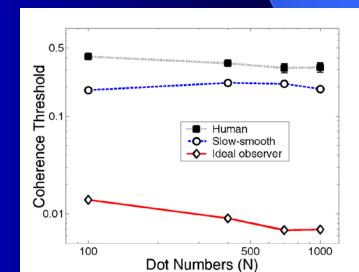
Ideal for the Real World?

• But human performance is well matched to a Bayesian model that uses a slow&smooth prior (Lu&Yuille 2006).

Slow&Smooth (Yuille&Grzywaxz 1987,

Weiss et al 19970.

Slow&smooth – consistent with knowledge of motion sequence statistics.

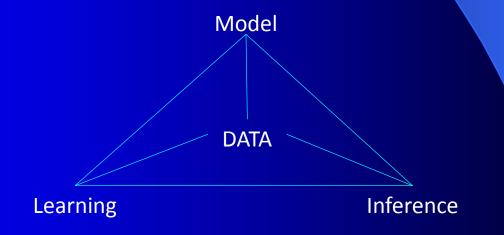


Neural Hypotheses

- The graphical nature of the models makes it straightforward to propose neuronally plausible implementations nodes of graph as neurons. Koch, Marroquin, Yuille (1987), Lee (1995).
- Population models. Heroic efforts to test these models by Lee and his collaborators.
- Analysis by Synthesis: Feedforward and feedback connections (Mumford 1991). Some experimental support from fMRI (Murray et al.).

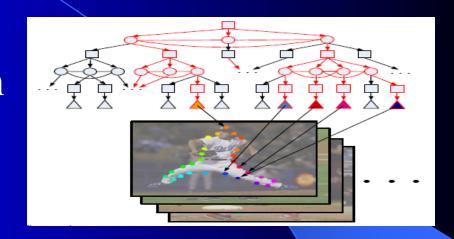
Bayesian Research Program.

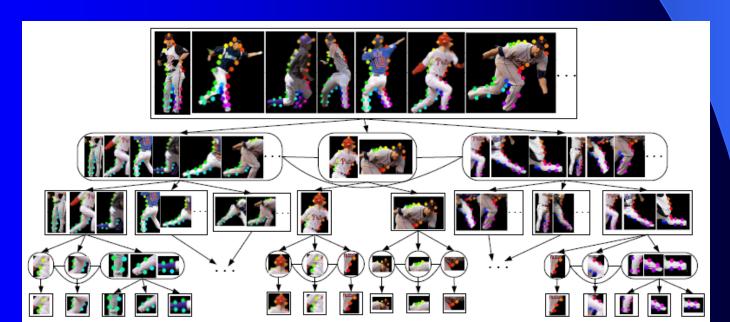
 Increasing sophisticated models, inference algorithms, learning.



And/Or Probabilistic Grammar:

P(I|S) & P(S) for human Poses.



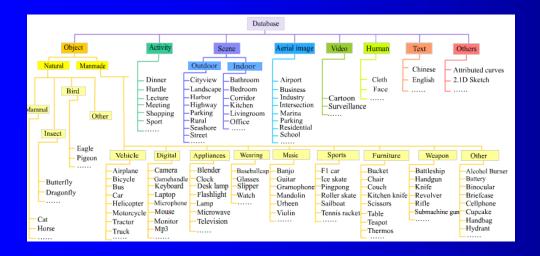


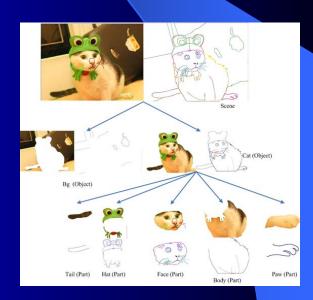
Bayes Research Program

- The Lotus Hill "Genome Project". Hand parse millions of images.
- Benchmarks for evaluating algorithms.
- Facility for learning generative models of images.
- Directed by Prof. S-C. Zhu.

Lotus Hill

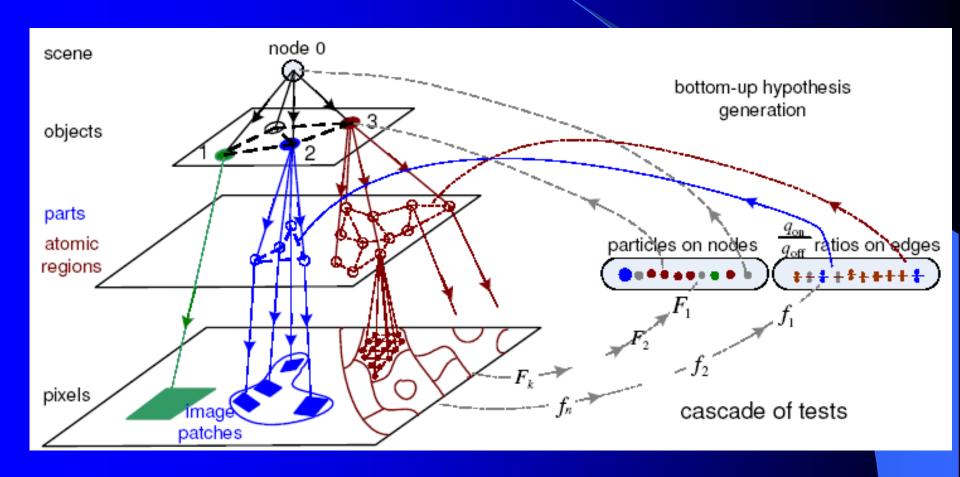
Hand parsed images (dataset released).





Inference Algorithms: Bottom-Up/Top-Down

Integrating generative and discriminative methods

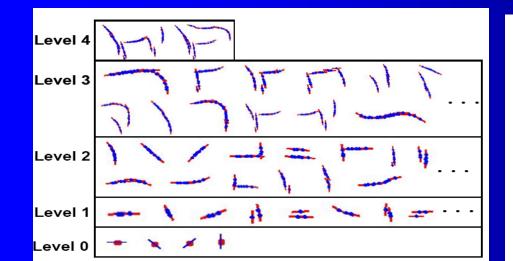


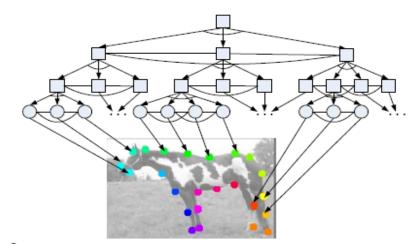
Unsupervised Learning

- Learn a model of a horse by hierarchical composition. (Leo Zhu & Yuille).
- Strategy: (i) suspicious coincidences,
 - (ii) competitive exclusion,
 - (iii) build hierarchy by composition.

Unsupervised Learning.

- Learn hierarchical schema by composition.
- Input 10 images, unknown pose/osition.
- Output; hierarchical model of a horse.
- Can detect and parse horses >300 real images.





Vision and Cognition

- The same probabilistic modeling techniques are being successfully applied to model other aspects of cognition.
- Vision, language, reasoning, motor control, and so on.
- This offers a theoretical framework for all of cognition.

Is Bayes complicated enough?

- "To myself I am only a child playing with pebbles on the beach, while vast oceans of truth lie undiscovered before me." – Isaac Newton.
- You can't explore the ocean without the right techniques and tools.

Conclusion

- "Bayes" probabilistic models on structured representations is extremely promising as a model of vision/cognition.
- There is good progress at scaling Bayes up to deal with the complexities of realistic images and visual tasks.
- There is encouraging progress at using Bayes to model psychophysics.

Facilities for Learning

- How to learn Bayes?
- Tutorial Programs e.g. the UCLA IPAM website. Videos and Pdf's of lectures by world experts.