Brief Introduction to Geometry and Vision

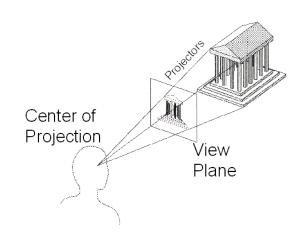
A.L. Yuille (UCLA)

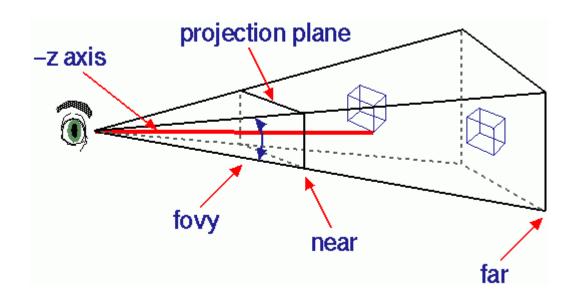
Plan of Talk

- Four Topics:
- (I) Basic Projection. Perspective. Vanishing Points.
- (II) Camera Calibration. Stereopsis. Essential Matrix. Fundamental Matrix.
- (III) Structure from Motion. Rigid. Extension to Non-Rigid.
- (IV) Geometric Priors. Manhattan World.

Geometry of Projection.

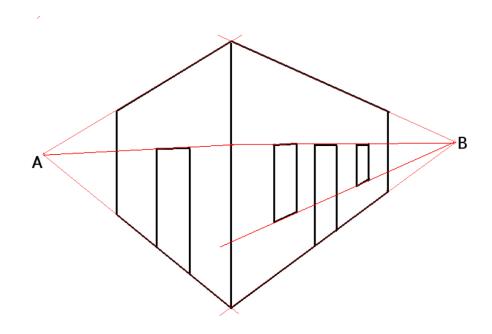
- Most analysis is based on the Pinhole camera model.
- Real cameras have lens (W. Freeman's lectures). See Szeliski's book for corrections to the pinhole camera model.





Properties of Perspective Projection

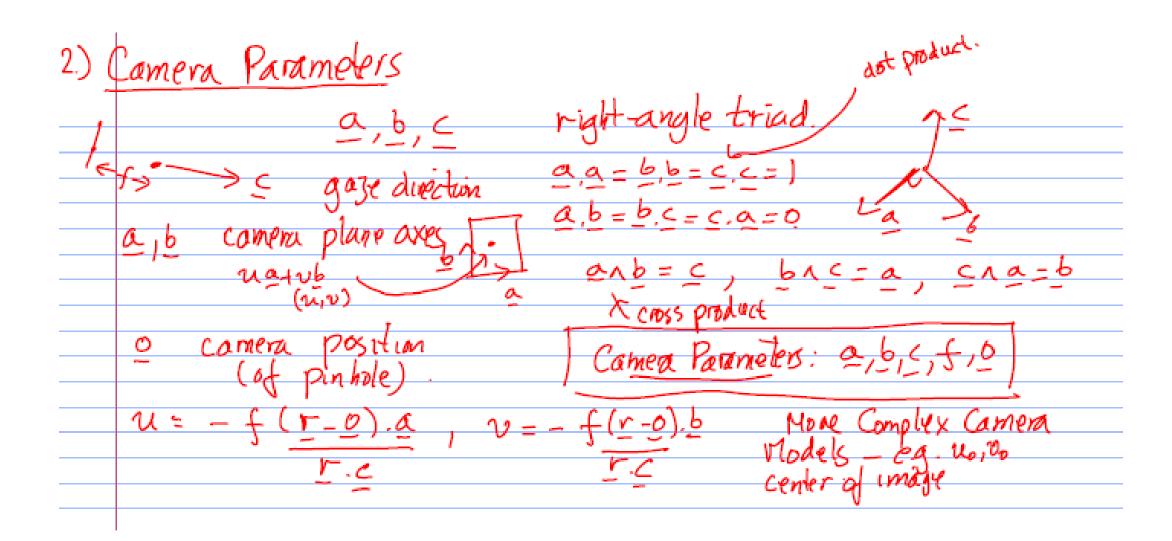
- Straight lines project to straight lines.
- Parallel lines in space project to lines which converge at a vanishing point.



Perspective 1

1) (Note Trit)	Perspective
	$y = f \times 3D$ position (X,Y,Z)
	image coordinates (40) V = fY foxal length f
	7 10101 (nm) -15179
	· Coordinate system based on camera. Origin (0,0,0) at pinhole (lens)
	· Camera is pointing in the Z direction

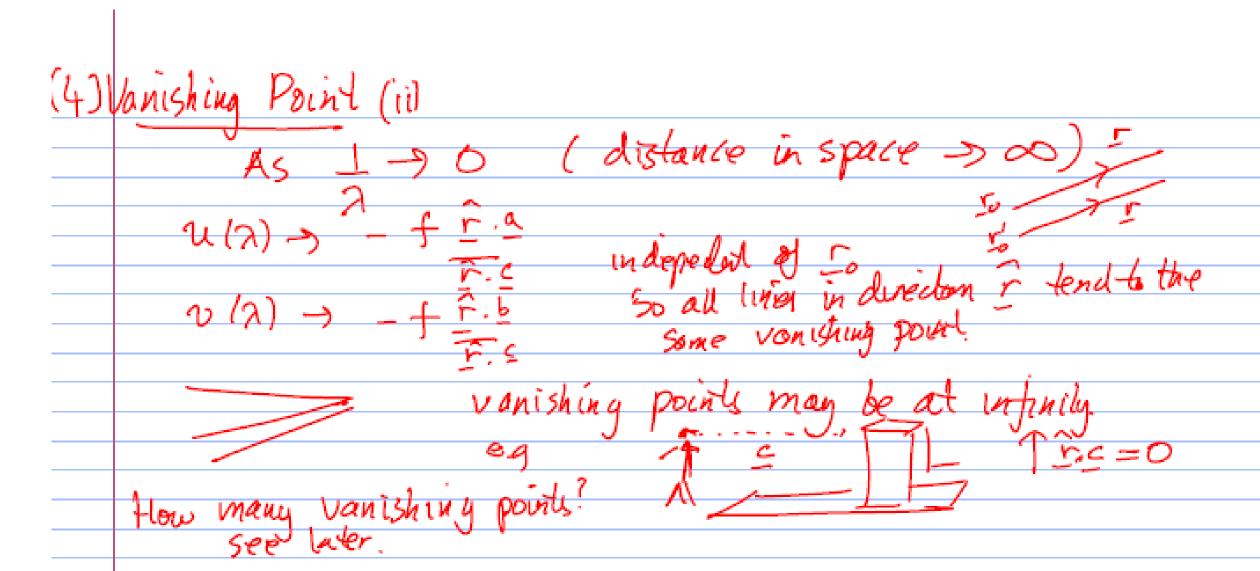
Perspective 2



Vanishing Points 1.

Vanishing Points Parallel Lines in Space
$$\frac{2}{3}$$
 $\frac{2}{3}$ $\frac{1}{3}$ $\frac{1$

Vanishing points 2.



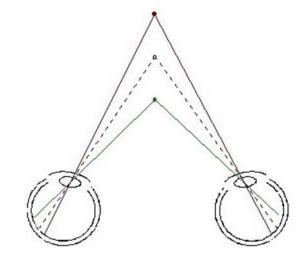
Linear approximations: Weak Orthographic

- Perspective projection can often be approximated by scaled orthographic projection (e.g., if Z is constant).
- This is a linear operation.
- Parallel lines project to parallel lines (vanishing points at infinity).
- This is often a good approximation which is easy to use.
- Maths of weak orthographic projection.

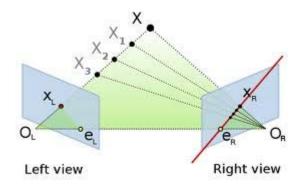
Linear Projection 1

Two Cameras. Binocular Stereo.

- Binocular stereo.
- Estimate depth from two eyes/cameras by triangulation.
- Requires solving the correspondence problem between points in the two images.
- Correspondence problem is helped by the epipolar line constraint.
- Camera calibration needed.



Epipolar Lines:



- Points on one epipolar line can only be matched to corresponding epipolar line.
- Epipolar lines depend on the camera parameters.
- If both cameras are parallel, then epipolar lines are horizontal.
- Geometric demonstration of epipolar line constraint.



Stereo Algorithms can exploit epipolar line constraints

Simplest model: estimate the disparity d at each point (convert to depth by geometry).

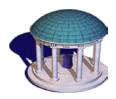
Matching unambiguous, despite epipolar line constraints.

Regularize by smoothness (ordering),

E.g., Marr and Poggio 1978. Arbib and Dev. 1977.

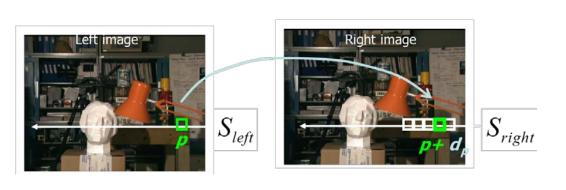
Simple Energy function: (Boykov)

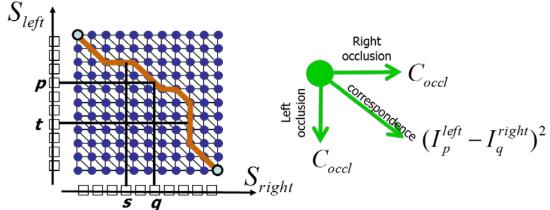
$$E(d_1, d_2, ..., d_n) = \sum_{p \in S_{left}} (I_p^{left} - I_{p+d_p}^{right})^2 + \sum_{p \in S_{left}} (d_p - d_{p+1})^2$$

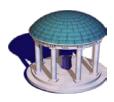


Exploit Epipolar Line constraint

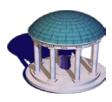
- The epipolar line constraint reduces correspondence to a onedimensional problem.
- Dynamic programming can be applied.





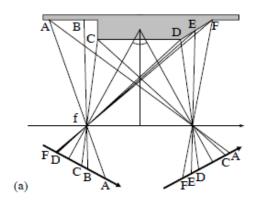


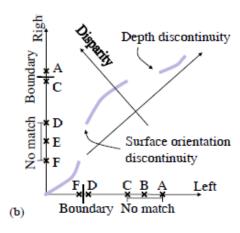
Results using Dynamic Programming



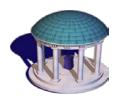
Half-Occlusions.

- · Da Vinci's stereopsis.
- Points are half-occluded: visible to one eye/camera but not to the other.



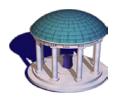


- This gives cues for the detection of boundaries.
- · Geiger, Ladendorf, Yuille, 1992, Belhumeur and Mumford 1992.
- · H. Ishikawa and D. Geiger. 1998 (across epipolar lines).



Camera Callibration

- Essential Matrix (Longuet-Higgins 1981). Fundamental Matrix (Q.T. Luong and O. D. Faugeras 1992, Hartley 1992).
- More calibration (Z. Zhang 2000).
- More reading on geometry:
- R. Hartley and A. Zisserman. Multiple View Geometry in computer vision. 2003.
- Y. Ma, S. Soatto, J. Kosecka, and S. Sastry. An Invitation to 3-D Vision. 2004.



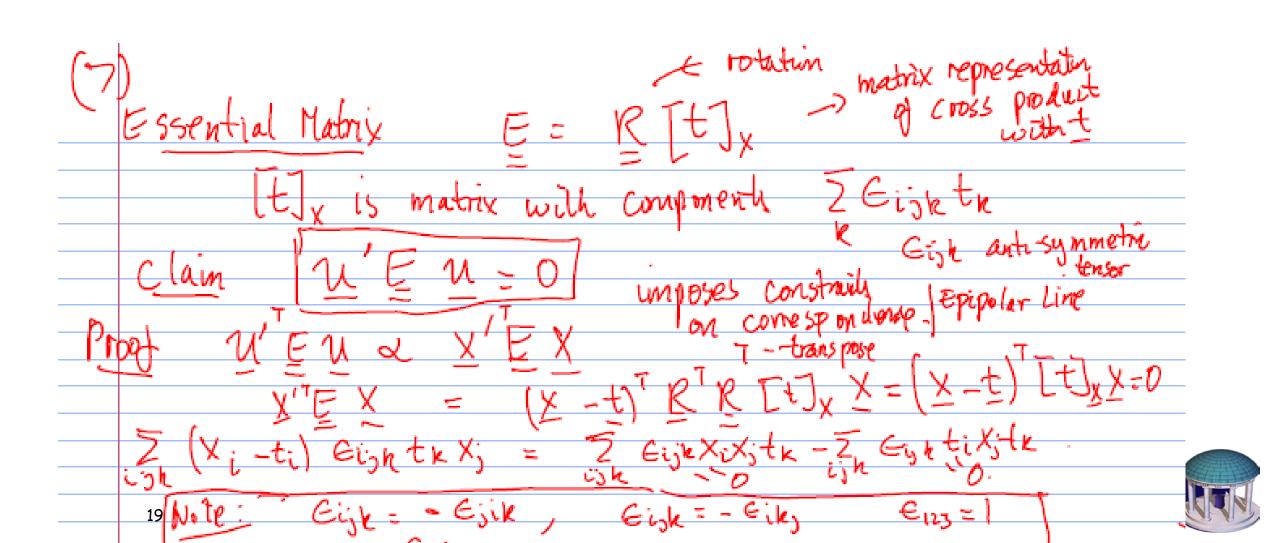
Essential Matrix 1

Essential Martrix Fundamental Matrix (world coordinates)

$$X = (X_1, X_2, X_3) \quad X' = (X_1, X_2', X_3') \quad \text{some 3D point}$$
Analysis based on camera coordinates.

 $(u) = f(X_1), \quad (u') = f(X_1), \quad (u') = f(X_1'), \quad (u') = f($

Essential Matrix 2

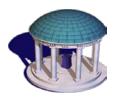


Structure from Motion: Rigid

- Linear Projection. 3D structure can be estimated by linear algebra (Singular Value Decomposition).
- · Camera parameters can also be estimated.
- This estimation is up to an ambiguity.
- Main paper:
- · C. Tomasi and T. Kanade. 1991.
- · But see also: L.L. Kontsevich, M.L. Kontsevich, A. Kh. Shen.
- "Two Algorithms fro Reconstruction Shapes). Avtometriya. 1987.

Structure from Motion: Rigid.

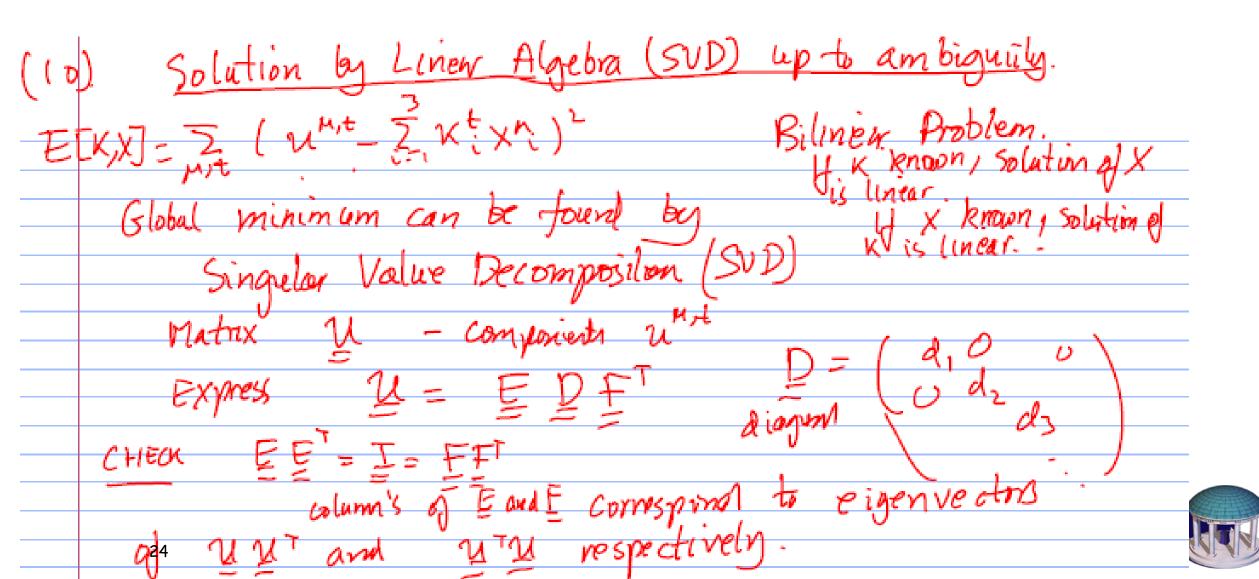
- · Linear projection.
- Set of images is rank 3.
- R. Basri and S. Ullman. Recognition by Linear Combinations of Models. 1991.
- · Maths of SVD.



Structure from Motion: Rigid 1

Structure from Motion: Rigid 2

Structure from Motion: 3



Structure from Motion: Rigid 4

Structure from Motion: 5

(12) Solution

Let
$$e_{k}(t)$$
 $f_{k}(p)$ be first three

 $k=1,2,3$ Columns of \underline{U} and \underline{V}

Then solutions are of form: $\underline{U} = (e_{1}U) e_{2}(t) \dots)$
 $\underline{V} = \underbrace{\sum_{k=1}^{2} P_{ik} e_{k}(t)}_{N} \underbrace{V_{i} = \sum_{k=1}^{2} Q_{ik} f_{k}(p)}_{N} Same ambiguity}_{N}$

where $\underline{P} = \underline{Q} = \underline{P}_{2}$ Same ambiguity

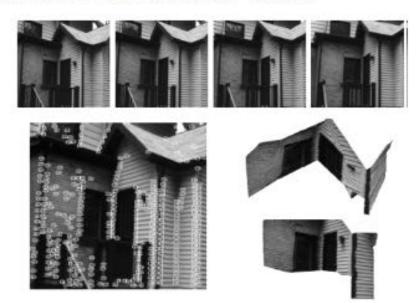
 $\underline{P} = \underline{P}_{2} = \underline{P}_{3}$
 $\underline{P} = \underline{P}_{4} = \underline{Q} = \underline{P}_{3}$

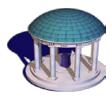
26

Structure From Motion: Rigid.

SVD Results: From Tomasi and Kanade. 1991

But see: Kontsevich et al.





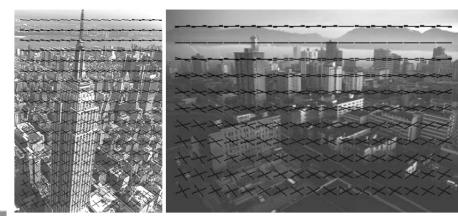
Extension to Non-Rigid Motion

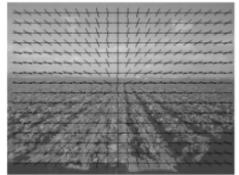
- This approach can be extended to a special class of non-rigid motion.
- The object can be expressed as a linear sum of basis functions. The sum varies over time.
- C. Bregler, A. Hertzmann, and H. Biermann. Recovering nonrigid 3D shape from image streams. CVPR. 2000.
- Theory clarified by:
- Y. Dai, H. Li, and M. He. A Simple Prior-free Method for Non Rigid Structure from Motion Factorization, in CVPR 2012 (ORAL). IEEE CVPR Best Paper Award-2012. (Code available).
- http://users.cecs.anu.edu.au/~hongdong/

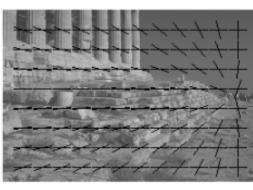
Non-rigid motion

(12)	Rielax Rigidily: Basis Function Models (Breylor et al)
	Unit = Kt. Xnt = Z Kt. Xnt Ne lax rigidity Too relaxed Unit = Ht. Xnt = Z Ht. Xnt Xn > Xint Problem is ill-posed.
a	Now suppose that the object XM+ can be expressed to a linear combination of bases: XM+ & B+ BM, 64.85.850
	Unit = ZZKt Bt Bt, a Coefficients, depend ont. Voit = ZZKt Bt Bt, a SUD-twice Rest Regar Voit = ZZ ZKt Bt Bt Bt, a More Complex - ambiguiden CVPK 2012.

 Many scenes, particularly man-made scenes, have a natural threedimensional coordinate systems caused by the structure of the world.







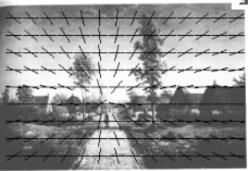
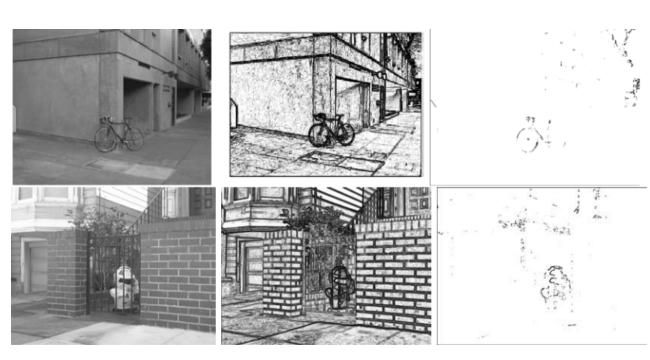
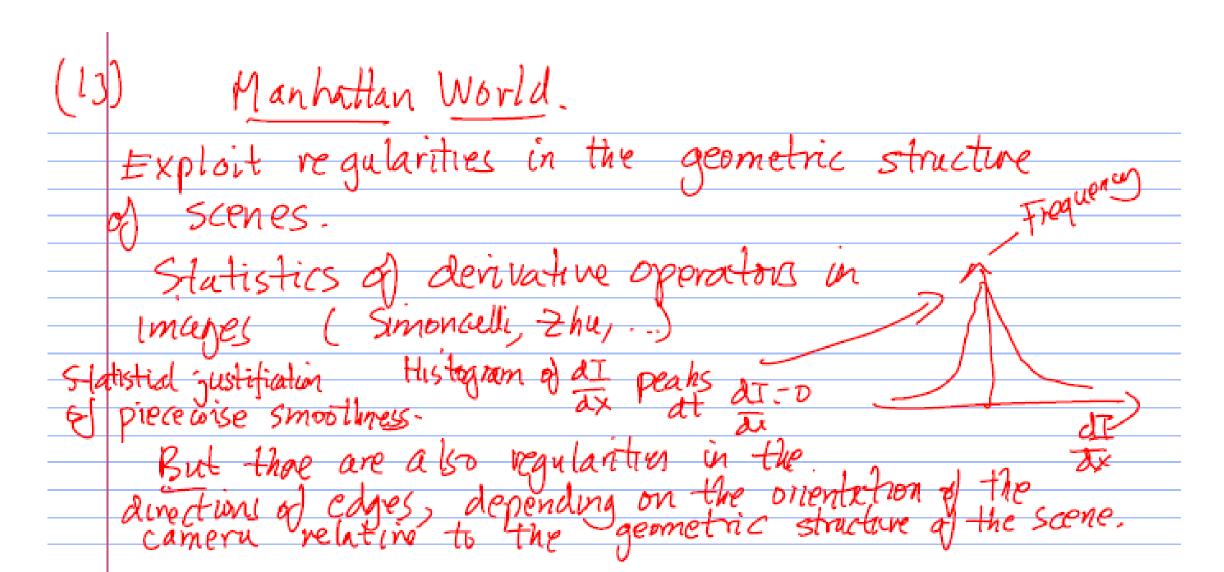


Figure 5: Results on an American mid-west broccoli field, the ruins of the

- Back to Ames Room:
- Non-Manhattan Edges:



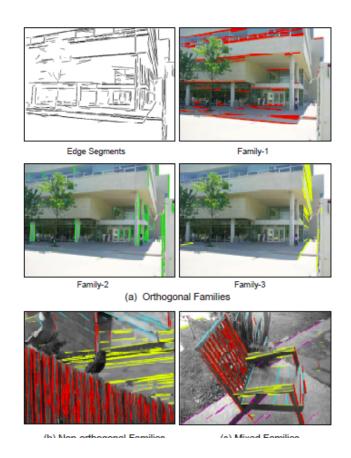


(24) Manhattan M	sorld.	ab >	h7
distribution of e	lges in the image	c)+ ~)	
	a scene to cal		\
Assume: A	pixel u mage	is	My = (
The ms are hidden	(iii) " " "	the X direction	mu=2 mu=3
variables,	(iv) An unaligi	nud edge edge	m u = 4 m u = 5

```
Generative Model for the image gradient VI at u
   P( VI(w) my, 4) \P=(a,b,c,f)
                                         Camera parameter.
Mu=5 (no edge)
          (VI(w) | my = 5, 7) = 0, unless (VI(u)) is small
          (edge in X direction)
          P(XI(u)|m_{u=1}, \Psi) \simeq 6, unless |XI(u)| is large and |XI(u)| points in direction
```

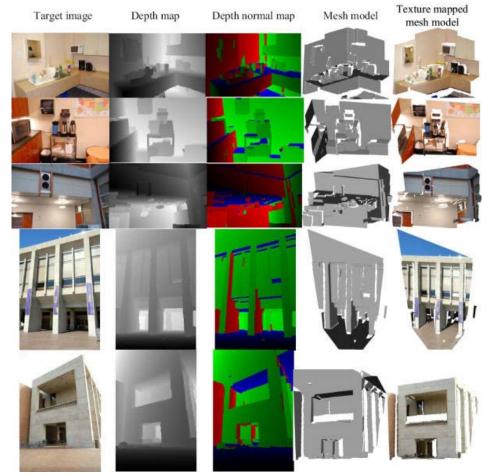
Beyond Manhattan:

• There are parallel lines in the scene, but they are not orthogonal.



- Manhattan World stereo:
- Piecewise planar surfaces with dominant
- Directions.
- Instead of assuming
- Piecewise smoothness.
- Video available:
- http://grail.cs.washington.edu/projects/manhattan/

• Y. Fuukawa, B. Curless, S. Seitz, and R. Szeliski. 2009.



Manhattan World Grammar

Website: http://www.youtube.com/watch?v=s0mhpKFv36g

Building Reconstruction using Manhattan-World Grammars

Carlos A. Vanegas Daniel G. Aliaga Bedřich Beneš Purdue University

