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Abstract

Hidden Markov Models (to illustrate DP and EM)
NOTE: NOT FOR DISTRIBUTION!!

1 Introduction

Previous lecture showed the general method for learning distributions with hidden variables. In this lecture we make
this precise by describing Hidden Markov Models (HMMs). This will involve dynamic programming and EM.

HMMs were developed for speech processing in the 1970’s but have been used for an enormous range of other appli-
cations including vision, see handout.

2 Observable Markov Models

Observable Markov models have the following ingredients. A set of N distinct hidden states {s1, ..., sN}. Denote the
state at time t by qt, where qt = si means the system is in state si at time t.

There is a distribution on the sequence of states. This can be formulated generally as P (qt+1 = sj |qt = si, qt−1 =
sk, ...). In this lecture we assume a first-order Markov model so that:

P (qt+1 = sj |qt = si, qt−1 = sk, ...) = P (qt+1 = sj |qt = si). (1)

I.e., the future is independent of the past except for the proceeding time state.

A first-order Markov model is specified by the transition probabilities aij = P (qt+1 = sj |qt = si) which obey
aij ≥ 0, ∀i, j and

∑
j aij = 1, ∀j. Denote these transition probabilities by A. The model also requires initial

probabilities πi = P (q1 = si) with
∑N

i=1 πi = 1. Denoted by π.

For an observable Markov model we can directly observe the states {qt}. An observation sequence O = Q =
{q1, ..., qT }. We can directly compute the probability of this sequence to be:

P (O = Q|A, π) = P (q1)
T∏

t=2

P (qt|qt−1) = πq1aq1q2 ...aqT−1qT . (2)

We can learn the transition and initial probabilities by maximum likelihood (ML) from a set of observation sequences
{Ok : k = 1, ..., K}:

(A∗, π∗) = arg max
(A,π)

K∏

k=1

P (Ok|A, π). (3)
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This can be directed computed to give:

π∗i =
∑K

k=1 I(qk
1 = si AND qk

t+1 = sj)
K

,

a∗ij =
∑K

k=1 I(qk
t = si AND qk

t+1 = sj)∑K
k=1

∑T−1
t=1 I(qk

t = si)
. (4)

Here I(q = s) is the indicator function – I(q = s) = 1 if q = s, I(q = s) = 0 if q 6= s.

How is this related to exponential models of form P (~x|~λ) = (1/Z[~λ]) exp{~λ · ~φ(~x)} and standard ML learning? I.e.
solve ~λ∗ = arg max~λ{log Z[~λ] − ~λ · ~ψ where ~ψ = (1/N)

∑K
k=1

~φ(~xk) is the training data? Or, find ~λ∗ such that
model expectation of the statistics are equal to the data statistics? Mathematically:

∑

~x

~φ(~x)P (~x|~λ∗) =
1
K

K∑

k=1

~φ(~xk) (5)

The answer is that these two approaches are exactly equivalent. To see this, we need to re-express the probability
distribution for the Observable Markov Model in the form of an exponential distribution. We can re-write it as:

P (Q) =
1

Z[~λπ, ~λA]
exp{~λπ · ~φπ(q1) +

T−1∑

i=1

~λA · ~φA(qi+1, qi)}, (6)

where the exponent terms are of form:

~λπ · ~φπ(qi) =
N∑

i=1

I(q1 = si) log πi,

~λA · ~φA(qi, qi+1) =
∑

I(qt = si, AND , qt+1 = sj) log aij . (7)

Here I(q = s) is the indicator function I(q = s) = 1 if q = s and I(q = s) = 0 if q 6= s. NOTE aij is not exactly aij

– CLARIFY THIS FOR NEXT DRAFT!!

The partition function is given by:

Z[~λπ, ~λA] =
∑

Q

exp{~λπ · ~φπ(q1) +
T−1∑

i=1

~λA · ~φA(qi+1, qi)}. (8)

It follows that the equations
∑

~x
~φ(~x)P (~x|~λ) = ~ψ can be solved analytically in this case to give the solutions in

equations (4).

3 Hidden Markov Models

Now suppose that the states q are not directly observable. Instead for each state qt ∈ |{s1, ..., sN}) we have an
observable Ot ∈ {v1, ..., vM}. There is an observation probability bj(m) = P (Ot = vm|qt = sj) that we observe
vm if we are in state sj . (For example, the states are ”biased coin” and ”unbiased coin” the observables are ”heads” or
”tails”. The probability of the observable being ”heads” will depend on which coin is used).

This gives a full model with the following elements:

1. N : Number of states S = {s1, ..., sN}
2. M : Number of observation symbols V = {v1, ..., vM}
3. State transition probabilities: A = {aij}, with aijP (qt+1 = sj |qt = si)

4. Observation probabilities: B = {bj(m)}, with bj(m) = P (Ot = vm|qt = sj)
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5. Initial state probabilities: π = {πi}, with πi = P (qi = si).

There are three basic tasks that we will want HMMs to address:

1. Given a model λ = (A,B, π), evaluate the probability P (O|λ) of a sequence O = (O1, ..., OT ) (so that we
can do model selection – use log-likelihood test to estimate whether a sequence of coin tosses it more likely
to come from a fair coin or a biased coin).

2. Given a model λ and observation sequence O = (O1, ..., OT ), find the most probable states Q =
{q1, q2, ..., qT } which has the highest probability of generating O: Q∗ = arg maxQ P (Q|O, λ).

3. Given a training set of sequences X = {Ok : k = 1, ...,K} find the best values of the model parameters
λ∗ = arg maxλ P (X|λ).

Observe that we specify the distribution P (O,Q|λ) = P (O|Q,B)P (Q|A, π), where P (O|Q,B) =
∏T

t=1 P (Ot =
vm|qt = sj) =

∏T
t=1 bj(m) and P (Q|A, π) = P (q1|si)

∏T−1
t=1 P (qt+1 = sj |qt = sk) = πq1

∏T−1
t=1 aqtqt+1 .

This can also be expressed as exponential distribution with hidden variables – i.e., of the form P (~x, ~y|~λ) =
(1/Z[~λ]) exp{~λ · ~φ(~x, ~y)} where ~x is observed and ~y is hidden. This requires an EM algorithm to solve for ~λ in
order to learn the parameters ~λ from training data {~xk : k = 1, ..., K} (see last lecture).

The exponential form for an HMM is obtained by combining the prior distribution for the state, see equations (6,7),
with a distribution for generating the data P (O|Q). This is a factorized distribution which is of form:

P (O|Q) = exp{~λD · ~φD(O, Q)} = exp{
T∑

t=1

∑
i = 1N

M∑
m=1

log bi(m)I(qt = si, AND Ot = vm)}, (9)

where the normalization factor is 1 (because the distribution is factorized so it is trivial to do the normalization).

Putting everything together gives the distribution:

P (O,Q|~λ) =
1

Z[~λπ, ~λA]
exp{~λπ · ~φ(q1) + ~λA · ~φA(Q) + ~λD · ~φD(O,Q)}. (10)

4 Task 1: Evaluation

We want to evaluate P (O|λ) and can express this as:

P (O|λ) =
∑

Q

P (O, Q|λ) =
∑

Q

πq1bq1(O1)aq1q2bq2(O2)bq2(O2)...aqT−1qT
bqT

(OT ). (11)

The problem is that Q has an exponential number of states NT . Summing over this is impractical in general. Fortu-
nately the form of the HMM makes this possible in polynomial time.

Define the forward variable:
αt(i) = P (O1, ...., Ot, qt = si|λ), (12)

is the probability of generating all the observations up to time t and being in state qt at time t (because of the Markov
property – this can be computed independently of the observations after t.

We compute the forward variable recursively:

α1(i) = P (O1, q1 = si|λ) = πibi(O1)

αt+1(j) = {
N∑

i=1

αt(i)aij}bj(Ot+1), (13)

which enables us to compute αT (i) is time O(N2T ).
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After computing the α’s, we can compute the probability of the data by:

P (O|λ) =
N∑

i=1

αT (i). (14)

An alternative algorithm which can be used instead (and which we will need later for learning) is the backward
variable:

βt(i) = P (Ot+1, ...., OT |qt = si, λ), (15)

which can be computed recursively by:
βT (i) = 1,

βt(i) =
N∑

j=1

aijbj(Ot+1)βt+1(j). (16)

This uses the Markov property that this is independent of the observations before t. We can also compute β1(i) in
O(N2T ) times and compute P (O|λ) =

∑n
i=1 β1(i).

Hence dynamic programming (i.e., the forward and backward algorithm) evaluates the probability of the data in poly-
nomial time exploiting the Markov property of the model (e.g. the independence between the conditional probabilities
of the early and late observations).

5 Task 2: Estimating the Best State Sequence

We can use DP to rapidly compute different properties of the state variables. For example, let γt(i) = P (qt = si|O, λ)
be the marginal posterior of the tth state.

Then we can easily compute

γt(i) =
P (O|qt = si, λ)P (qt = si|λ)

P (O|λ)
=

αt(i)βt(i)∑N
j=1 αt(j)βt(j)

. (17)

NOTE; THE POSTERIOR MARGINAL IS SOMETIMES USED AS AN ALTERNATIVE TO THE MAP ESTI-
MATE (MOTIVATE FROM DECISION THEORY!!).

Often we want to estimate the MAP:
Q∗ = arg max

Q
P (Q|O, λ). (18)

This can be done by the Viterbi algorithm (a form of DP) as follows. Define:
δt(i) = max

q1,...,qt−1
P (q1, q2, ..., qt−1, qt = si, O1, ..., Ot|λ), (19)

which is the probability of the highest probability path that accounts for all the first t observations and ends in state
qt = si.

We calculate δt(i) recursively by:
Initialize δ1(i) = πibi(O1), ψ1(i) = 0 (20)

Recursion δt(j) = max
i

δt−1(i)aijbj(Ot)

ψt(j) = arg max
i

δt−1(i)aij (21)

Termination p∗ = max
i

δT (i),

q∗T = arg max
i

δT (i). (22)

The best path Q∗ can be found by backtracking: q∗t = ψt+1(q∗t+1), t = T − 1, T − 2, ..., 1.

The term ψt(j) keeps track of the state that maximizes δt(j) at time t− 1.

This algorithm also has complexity O(N2T ) and so is efficient and practical.
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6 Task 3: Learning Model Parameters

Let X = {Ok : k = 1, ..., K} be a set of training sequences. We want to estimate the parameters λ by maximum
likelihood:

λ∗ = arg max
λ

P (X|λ) = arg max
λ

K∏

k=1

P (Ok|λ). (23)

This is performed by the EM algorithm using DP to make the computations practical.

Define:

ζt(i, j) = P (qt = si, qt+1 = sj |O, λ)

=
αt(i)aijbj(Ot+1)βt+1(j)∑N

k=1

∑N
l=1 αt(k)aklbl(Ot+1)βt+1(l)

. (24)

EM is performed by the Baum-Welch algorithm:

E-step: compute ζt(i, j) and γt(i) using current estimate of λ.

M-step: recalculate λ form ζt(i, j) and γt(i).

Recalculating λ gives:

a∗ij =
∑T−1

t=1 ζt(i, j)∑T−1
t=1 γt(i)

,

b∗j (m) =
∑T

t=1 γt(j)I(OT = vm)∑T
t=1 I(OT = vm)

. (25)

For multiple sequences X = {Ok : k = 1, ..., K} we have P (X|λ) =
∏K

k=1 P (Ok|λ). This modifies the updates to:

a∗ij =
∑K

k=1

∑T1
t=1 ζt(i, j)∑K

k=1

∑T−1
t=1 γt(i)

,

b∗j (m) =
∑K

k=1

∑T
t=1 γt(j)I(OT = vm)∑K

k=1

∑T
t=1 I(OT = vm)

. (26)

CHECK FORMULAE FOR bj(m)!!

π∗i =
∑K

k=1 γk
1 (i)

K
. (27)

This is the same as using the general form for EM with exponential distributions (see last lecture) and substituting in
the exponential form of the HMM. Recall that this can be expressed as:

E− Step qt+1
µ (~yµ) = P (~yµ|~xµ, ~λt),

M− step solve for ~λt+1 s.t.
∑

~y,~x

~φ(~x, ~y)P (~x, ~y|~λt+1) =
∑

µ

∑

~yµ

qt+1
µ (~yµ)~λ · ~φ(~xµ, ~yµ). (28)

Hence the M-step involves selecting the parameters ~λ so that the expected statistics of the model are equal to the
observed statistics (averaged over the training set) and with the hidden states averaged with respect to the estimated
distributions over the hidden states.
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