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Abstract

A novel deformable template is presented which detects the boundary of an open hand in

a grayscale image without initialization by the user. A dynamic programming algo-

rithm enhanced by pruning techniques finds the hand contour in the image in as little as 19

seconds on a Pentium 150. The template is translation- and rotation-invariant and accomo-

dates shape deformation, significant occlusion and background clutter, and the presence of

multiple hands.

2



Symbols

Boldface letters, e.g. x, denote vectors.

P (x|y) denotes conditional probability of x given y.
√

a denotes the square root of a.
∑

denotes summation.
∏

denotes repeated product.
∫

denotes integration.

⊥ denotes “perpendicular to.”

<, > denote less than and greater than, respectively.

∇I(x) denotes the gradient of I with respect to x.

∝ denotes “proportional to.”

≈ denotes “approximately equal to.”
argmax

x f(x) denotes the value of x that maximizes f(x).

f ? g denotes the convolution of f with g.

π denotes the constant 3.14159...

|x| denotes the modulus of x.

∞ denotes infinity.

Greek letters: α, β, δ, ∆, ε, λ, µ, φ, σ, θ denote alpha, beta, delta (lower and upper case),

epsilon, lambda, mu, phi, sigma, theta.
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1 Introduction

A promising approach to the detection and recognition of flexible objects involves represent-

ing them by deformable template models, for example, [14, 24, 25, 1, 22]. These models

specify the shape and intensity properties of the objects. They are defined probabilistically

so as to take into account the variability of the shapes and their intensity properties.

The flexibility of such models means that we have a formidable computational problem

to determine if the object is present in the image and to find where it is located. In simple

images, standard edge detection techniques may be sufficient to segment the objects from the

background though we are still faced with the difficult task of determining how edge segments

should be grouped to form an object. In more realistic images, however, large segments of

object boundaries will not be detected by standard edge detectors. It often seems impossible

to do segmentation without using high level models like deformable templates [14].

Many optimization strategies have been proposed for deformable templates. For a de-

scription of approaches and theoretical comparisions between certain methods see [26].

Broadly speaking, either the algorithms are too slow for real time processing or they require

initialization by the user. If initialization is provided, then algorithms based on dynamic

programming [4], such as [8, 9], or on gradient descent [5], can find the optimal solution.

(Dynamic programming was also used in some previous work to find generic contours in im-

ages, such as [3, 19].) Other graph-search algorithms related to dynamic programming are

used to perform template matching, such as [12], and also [10], which searchs automatically

for the optimal match given a set of local features extracted from an image.

In this paper we show that dynamic programming can, in principle, be used to detect

deformable objects in reasonable time without initialization. We test this result with a

Bayesian deformable hand template (an earlier, non-Bayesian version of this work appears

in [6]). Adaptive quantization is used for the continuous variables. This enables the algorithm

to find a hand in six minutes in a 388 × 512 image. The use of pruning techniques allows
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us to speed the algorithm up by an order of magnitude. Our current algorithm runs in 25

seconds on a Pentium 150, and as few as 19 seconds for simple images. Adding an occlusion

process allows the algorithm to find the hand even when it is significantly occluded (and

to identify the location of the occlusion), and multiple hands can be detected in the same

image.

2 The Deformable Hand Template

Our deformable template is designed to detect planar views of a hand (or multiple hands) in

a grayscale image. The template consists of four elements: a geometric prior, an occlusion

process, an imaging model (all three of which make up the Bayesian model) and a dynamic

programming optimization algorithm. The geometric prior describes probabilistically what

configurations (shapes) the hand template is likely to assume, and the imaging model to-

gether with the occlusion process describe probabilistically how any particular configuration

will appear in a grayscale image. Given an image, the Bayesian model assigns an a posteriori

probability to each possible hand configuration. A dynamic programming algorithm searches

for the maximum a posteriori (MAP) configuration, the configuration that optimally fits the

image data.

2.1 The Geometric Prior

The first part of the Bayesian model is the geometric prior, which assigns a probability to

each hand configuration. The configuration is represented by a chain of points x1,x2, . . . ,xN

in the plane which trace the boundary of the 2-dimensional hand shape, and by an associated

chain θ1, θ2, · · · , θN of normal orientations which describe the direction of outward-pointing

normal vectors at the points (see Figure 1). Each point xi has two components xi and yi

and is quantized to the image pixel lattice. For brevity we define qi = (xi, θi).
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The geometric prior is defined so as to assign high probabilities to configurations q1,q2, · · · ,qN

which are hand-like and low probabilities to configurations that are not. This is achieved by

comparing a configuration to a fixed prototype shape q̃1, q̃2, · · · , q̃N (constructed manually

from a representative photograph of a hand) and penalizing any deviation in shape between

the two, irrespective of global rotation and translation. (The scale of the prototype is fixed

and we assume knowledge of this scale when we execute our algorithm.)

Deviations in shape are measured by two kinds of shape similarities. First, the relative

orientation of θi and θi+1 should be similar to that of θ̃i and θ̃i+1. Expressed in terms of

probabilities, this similarity is written

P (θi+1|θi) = G(θi+1 − θi − (θ̃i+1 − θ̃i); σa,i) (1)

where G(x; σ) = 1√
2πσ

e
−x2

2σ2 and σa,i is the standard deviation governing the angular relation-

ship between stage i and stage i + 1 of the configuration.1 This expression holds for all but

three values of i, the ones corresponding to points xj1,xj2,xj3 which precede the ”hinges”

between the index fingers. At these special values of i = j1, j2orj3, we define the conditional

probability to be uniform between certain limits: P (θi+1|θi) = 1/δj if θi+1 − θi is between π

and π + δj and P (θi+1|θi) = 0 otherwise. Here the “hinge angle” between adjacent fingers is

assumed to range uniformly from 0 (i.e. fingers together) to δj (maximum spread angle in

radians).

Second, we expect the geometric relationship of xi, θi and xi+1 to be similar to that

of x̃i, θ̃i and x̃i+1. Specifically, the displacement vector ∆x̃i = x̃i+1 − x̃i that connects x̃i

to x̃i+1 need only be rotated the proper amount to make a prediction ∆x
p
i of the unknown

displacement ∆xi = xi+1−xi. As Figure 2 suggests, ∆x
p
i = R(θi−θ̃i)∆x̃i where R(θ) denotes

counterclockwise rotation by θ. In our model we allow xi+1 to deviate from x
p
i+1 = xi +∆x

p
i

more freely in the normal direction perpendicular to ∆x
p
i than along the tangent direction

1The argument of the Gaussian is to be evaluated modulo 2π since it is an angle. As a result, the standard

normalization factor 1√
2πσ

is only approximately correct.
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parallel to ∆x
p
i . The rationale is that the length of ∆xi is determined by the scale of the

template and should not change much across stages, whereas the direction of ∆xi varies as

the contour bends. This may be expressed as follows:

P (xi+1|xi, θi) = G([∆xi −∆x
p
i ] ·∆x̂

p
i ; σti)G([∆xi −∆x

p
i ]
⊥ ·∆x̂

p
i ; σni

) (2)

where ∆x̂
p
i =

∆x
p
i

|∆x
p
i |

and (x, y)⊥ = (−y, x) represents rotation of a vector by 90 degrees.2 Here

σt,i and σn,i are standard deviations along the tangent and normal directions, respectively

(σt,i < σn,i). The dependence of these standard deviations, as well as the form of P (θi+1|θi),

on stage i allows the prior to ”bend” more easily at certain stages, such as the ”hinge”

between two fingers.

Combining these two elements of the shape prior yields

P (qi+1|qi) = P (θi+1|θi)P (xi+1|xi, θi), (3)

and the prior of the entire configuration is

P (q1 · · ·qN ) = P (q1)
N−1
∏

i=1

P (qi+1|qi) (4)

where P (q1) is a uniform constant. Notice that the prior is a Markov chain invariant under

global translations and rotations, and the behavior of the prior is similar to the deformations

that a piece of wire bent into the shape of a hand contour may assume. The values of

the standard deviations were chosen experimentally by statistically sampling the prior, i.e.

generating samples from the prior distribution to illustrate what shapes have high probability

(see Figures (3,4 for examples). Learning techniques such as Minimax Entropy Learning [28]

could be employed to determine more accurate values.

2Since xi+1 is quantized on a lattice, the normalization of the Gaussians will again differ from their

standard form.
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3 The Occlusion Process

An occlusion process which interacts with the imaging model (see next section) has been

added to the prior to allow the deformable template to detect a hand even when part of

the hand is occluded or obscured by noise. The occlusion process is a chain of occlusion

state variables h1, h2, . . . , hN associated with the configuration points x1,x2, . . . ,xN . Each

occlusion state variable hi may assume one of three values: 0, for non-occlusion; 1/2, denoting

a triple point (i.e. corner or T-junction); and 1, for occlusion. These three occlusion states

have distinct image properties (e.g. there is much less image information about the hand in

an occluded region than in an unoccluded region), and using an occlusion process allows us

to exploit these differences in the deformable template, rather than confound them.

We model the occlusion process as a Markov chain:

P (h1 · · ·hN) = P (h1)

N−1
∏

i=1

P (hi+1|hi) (5)

The transition probabilities P (hi+1|hi) are chosen to be independent of i: P (hi+1 = b|hi =

a) = Wba where W =











1− ε β 0

ε 0 α

0 1− β 1− α











. The entry Wba represents the transition

probability from state a to state b, where the first, second and third rows represent states

0, 1/2 and 1 respectively (and similarly for columns). These transition probabilities are

shown in Figure 5. ε is the probability that state 0 will jump to state 1/2 and is chosen

small, corresponding to the fact that occlusions are relatively rare. State 1/2 acts as a

bridge between the non-occlusion state 0 and occlusion state 1, representing the fact that

the transition from a non-occlusion to an occlusion is usually signaled by a triple point, where

the occluder and the object being occluded each produce edges at distinct orientations. (As

the matrix indicates, our model forbids direct transitions between the 0 and 1 states.) β is

the transition probability from state 1/2 to 0, and α is the probability that state 1 will jump

back to the triple point state 1/2. The starting probability P (h1) is set to (1, 0, 0), i.e. the
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first point is assumed to be non-occluded. Finally, the occlusion process is independent of

the geometric prior, so that the overall prior for the deformable template is given by:

P (s1, s2, · · · sN ) = P (q1 · · ·qN )P (h1 · · ·hN), (6)

where the notation si is used to denote (qi, hi).

As we will describe in more detail in Section (4), we will have a specific cornerness

measure C(x) which is statistically associated with the triple points which often occur at

occlusions. C(x) measures the presence of a secondary edge at or near x with an orientation

different from the primary edge at x, as occurs at corners and so-called “T-junctions ” (see

[20, 17, 15] for details). Figure 7 shows an example of an image and its cornerness map.

The cornerness measure provides evidence of occlusions: at most occlusion points there is

a T-junction formed where the occluder and the object being occluded produce edges at

distinct orientations. We will see how to exploit this information in the next section.

4 The Imaging Model

A simple imaging model explains what image data may be expected given a specific configu-

ration. Rather than explicitly modeling the grayscale intensities I(x) at each pixel location

x we model three sets of data derived from the Nitzberg corner/edge detector [20]. Our

choice of this detector, and its parameters, was determined by statistical evaluation of its

performance, see subsection (4.1). The output of the detector was the edge map Ie(x), the

cornerness map C(x), and the image gradient orientation map θI(x). For simplicity, we

will use the symbol D to represent the entire edge map, the cornerness map and the image

gradient orientation map jointly, so that D(x) = (Ie(x), C(x), θI(x)).

Since D(x) depends heavily on the presence or absence of object boundaries in the image,

our model accordingly divides the pixel lattice into three classes: the ”on” points that are

on the hand boundary in the occlusion state 0, the ”triple” points that are on the template
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in the occlusion state 1/2, and the ”off” points everywhere else (all points on the hand

boundary in the occlusion state 1 and all points off the hand boundary). Each set of points

is described by its own imaging model. The imaging model factors over all pixels in the

lattice3:

P (D|s1 · · · sN) =
∏

all pixels
y

P(D(y)|s1 · · · sN) (7)

where P (D(y)|s1 · · · sN) is set to Pon(D(y)|θi), Ptriple(D(y)) or Poff (D(y)). Pon is chosen

if there exists an i from 1 to N such that y = xi and hi = 0; Ptriple if there is an i for

which y = xi and hi = 1/2; and Poff if there is no i for which y = xi, or if there is an i

for which y = xi and hi = 1. Note that the classification of points in an input image into

“on”, “triple” and “off” is specified by the configuration s1 · · · sN, which is determined by

the dynamic programming algorithm described in Section 5.

We assume the three imaging models factor into separate probabilities on the edge map,

the cornerness map and the image gradient orientation map:

Pon(D(y)|θi) = P e
on(Ie(y))P c

on(C(y))P a
on(θi − θI(y)), (8)

Ptriple(D(y)) = P e
triple(Ie(y))P c

triple(C(y))P a
triple(θi), (9)

and

Poff(D(y)) = P e
off (Ie(y))P c

off (C(y))P a
off(θi). (10)

The probabilities P e
on, P c

on, P e
triple, P

c
triple, P

e
off and P c

off were measured using histogram-

ming techniques on a dataset of images (on which hand edges and triple points were selected

manually). P a
on was modeled as P a

on(θ−θI) = (1/2)[G(θI−θ; σO)+G(θI +π−θ; σO)], reflect-

ing the fact that the orientation estimated from the image gradient usually points towards

3Since the value of D(x) at each point x is derived from image intensities I(x′) in a neighborhood of x,

the independence of D(x) from point to point is only an approximation.
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or 180 degrees against the true normal direction. Finally, P a
triple and P a

off were assumed

constant (i.e. an assumption of isotropy).

There are a large variety of edge and corner detectors to choose from. Our choice of the

Nitzberg detector was motivated by the following experimental results.

4.1 Evaluating Detectors using Chernoff Information

In this paper, we are concerned with discriminating between edges/corners and non-edges/non-

corners in the image. The task of edge detection is to determine whether the value of a

filtered image Iφ(x) at a specific point x is more likely caused by an edge or by a non-

edge. From our perspective, this task can be formulated in terms of discriminating be-

tween two distributions [12] – the distribution of filter responses when an edge is present,

Pon(y) = Prob(Iφ(x) = y|x is on an edge) and the distribution of responses when there is no

edge Poff (y) = Prob(Iφ(x) = y|x is off an edge).

The existence of probability distributions Pon, Poff which can reliably be determined from

image data is crucial to the success of our approach. Ideally such distributions would change

relatively little between images within similar domains. The justification for Pon, Poff is

based on our statistical analysis of edge detectors on two classes of images: (i) images of

hands in indoor scenes (described in this paper), and (ii) images of birds in outdoor scenes

(used as a consistency check).

We considered several types of edge detector operator. It is clearly desirable to use

operators whose on-edge and off-edge statistics differ as much as possible. It has been argued

[27] that a suitable measure of difference for such problems is the Chernoff Information which

determines the error rates (i.e. rates of false positives and false negatives) in making the

optimal statistical decision (using criteria motivated by the Neyman-Pearson lemma) (see

[7]). This is a good measure of difference because it defines the least error rate possible for

distinguishing between data from the two distributions using a log-likelihood test with optimal
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choice of threshold. Moreover, Chernoff Information also appeared naturally in our analysis

of fundamental bounds and expected time convergence rates of search algorithms described

elsewhere [27].

The first edge detector we considered was the modulus of the image gradient – i.e.

φ(I(x)) =
∣

∣

∣

~∇I(x)
∣

∣

∣
. This was computed at a range of scales obtained by convolving the

image with a Gaussian filter before taking the gradient.

It was then necessary to determine reliable on-edge and off-edge histogram statistics from

our images. For off-edge we tried two approaches which gave similar answers. Firstly, we

computed histograms over the entire image reasoning that the vast majority of pixels would

be off-edge and so the edges would only weakly contaminate the histograms. Secondly, we

randomly sampled off-edge pixels by clicking with a mouse. Both histograms were very

similar. The effect of convolving the image with a Gaussian was, not suprisingly, merely to

smooth out the histograms. The Poff were then calculated by normalizing the histograms.

To determine the on-edge statistics we first had to locate reliable edges in the images.

These edges should not be those most visually saliant because this would obviously compro-

mise the statistics. Our technique was to select a long smooth edge of an object in the scene

and fit this edge to a parameterized curve such as a spline. We could then gather statistics

along the spline. The length, and smoothness, of the edge meant that we were getting a

representative sample of edge strengths (i.e. the modulus gradients were high at some points

on the curve but were low at others). In addition, to take into account errors in fitting the

spline, we explored the edge strengths in neighbourhoods a few pixels away from the spline

and perpendicular to it. Changing the neighbourhood size did not significantly alter our

results. We then computed the histograms and calculated the Pon as before.

The results of this process are shown in Figure (8). Empirically, the general shapes of

the Pon, Poff and their log likelihood ratios are similar from image to image in datasets of

hand images, and similar results have been obtained on bird images.
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We also repeated this process for other edge detectors and rated them based on the

Chernoff information of their Pon, Poff . Of the operators we considered, the one with best

Chernoff information was the edge detector devised by Nitzberg.

In addition, studies of statistics of natural outdoor scenes and underwater images have

demonstrated qualitative similarity between the edge and non-edge statistics in these two

different domains and have related them to the receptive field properties of the retinas of

animals [2]. Finally, we observe that the work of Zhu and Mumford [29] demonstrated that

the statistics of certain edge detection filters such as first and second derivatives was very

similar in form between different images. Since most of the points in images are non-edges

these statistics will be dominated by the off-edge terms and so provide additional evidence

that the Poff are similar between images. More extensive tests on large image databases

also confirm the consistency of Pon and Poff [18].

5 Dynamic Programming With Pruning

Having constructed the prior P (s1 · · · sN) and imaging model P (D|s1 · · · sN), Bayes theo-

rem may be used to find the a posteriori probability: P (s1 · · · sN|D) = P(D|s1···sN)P(s1···sN)
P(D)

.

Fortunately we do not need to undertake the difficult calculation of P (D), since the MAP

estimate is equivalent to

MAP =
argmax

s1···sN {
N
∏

i=1

P on
i (si)

Poff(si)
}P (s1 · · · sN), (11)

where P on
i (si) denotes Pon(D(xi)|θi) if hi = 0, Ptriple(D(xi)) if hi = 1/2, and Poff(D(xi))

if hi = 1. This result assumes all the members of the chain {x1,x2, · · · ,xN} to be distinct

(i.e. non-self-intersecting hand contour).

Since the coupling of the variables si in the MAP expression is chain-like — si is directly

coupled by the prior only to si−1 and si+1 — dynamic programming (DP) may be applied to

find the MAP, as long as the si are quantized to finite sets. The occlusion process variables
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hi are discrete and the position variables xi are naturally quantized on the image lattice, but

it less clear how to quantize the real variables θi. Rather than quantize the θi densely from

0 to 2π and incur an enormous multiplication in the number of nodes to search in each stage

of DP, we experimented with various adaptive quantization techniques to select only a small

number of θi’s to consider for each hi and xi. Of the several variations we experimented

with, the most successful one selects two θi candidates for each hi and xi. The first is the

angle predicted by the prior at stage i (i.e. argmax(θi)P (θi|θi−1) where θi−1 is the best

predecessor of si chosen by DP); the second is either θI(xi) or θI(xi)+π, whichever is closer

to the θi predicted by the prior.

We review the DP procedure briefly and introduce some new notation. DP searches for

the best path, i.e. best sequence of values s1, s2, · · · , sN (see Figure 9), in a stage-by-stage

procedure. At each stage i the best path to each si is determined on the basis of previous

computations of the best paths to each si−1; by best path we mean the one that maximizes

the score fi(si) = {
∏i

j=1

Pon
j

(sj)

Poff (sj)
}P(s1, s2, · · · , si). (Note that, although we are describing

the procedure in terms of probabilities, we perform the calculations on the computer in

terms of sums of log probabilities to avoid the numerical instabilities that occur when many

probabilities are multiplied together.) In the final stage, the best sN is determined and the

other variables sN−1, sN−2, · · · , s1 are successively recovered.

We use a linked-list data structure to represent the partial paths in the computer, allowing

the computer to allocate memory dynamically at each stage to “grow” only those paths that

have survived pruning. This technique saves a considerable amount of memory compared

to standard dynamic programming implementations in which memory is allocated for every

possible path at the start of the algorithm.

We also exploit the limited fan-out from one stage to the next: P (si+1|si) is negligible

(or zero) for most pairs si and si+1, and so the spatial component of the DP search can be

narrowed. Given si, only a fairly small region of spatial candidates xi+1 need be considered.
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This small region of pixels, whose size we denote R, is much smaller than the total number

of lattice pixels P , reducing the computational complexity to 2×3×PN×2×2R = 24RPN .

We now turn to a discussion of two pruning methods used to speed up the DP algorithm.

5.1 Relative Pruning

The addition of a relative pruning technique, inspired by pruning techniques developed in

speech processing [16] and natural language processing [13], reduces the running time to as

little as 25 seconds (clocked on a Pentium 150 when the occlusion process is turned off). In

this technique, all scores fi(si) at stage i are compared to the top score f ∗i at this stage, and

all si with scores fi(si) < εpf
∗
i are eliminated from further consideration (εp = e−10). As we

will show next, the scores are approximately proportional to partial path probabilities and

so we are essentially removing all paths at each stage with probability sufficiently smaller

than the most probable path.

If we make the approximation P (s1 . . . sN) ≈
∏N

i=1 P (si), then we can calculate the

probability of a partial path conditioned on the image data. From Bayes rule we have

P (s1 . . . sm|D) =
∑

sm+1...sN

P (D|s1 . . . sN)P (s1 . . . sN )/P (D) (12)

and since P (D) and
∏

all pixels y Poff(D(y)) depend only on D,

P (s1 . . . sm|D) ∝
∑

sm+1...sN

N
∏

i=1

P on
i (si)

Poff (si)
P (si) (13)

= {
m
∏

i=1

P on
i (si)

Poff(si)
}

∑

sm+1...sN

{
N
∏

i=m+1

P on
i (si)

Poff(si)
P (si)} (14)

∝ P (s1 . . . sm)
m
∏

i=1

P on
i (si)

Poff (si)
(15)

since
∑

sm+1...sN
{
∏N

i=m+1
P on

i (si)

Poff(si)
P (si)} is independent of s1 . . . sm.

15



5.2 Absolute Pruning

We devised another pruning technique, motivated by the probabilistic bounds on log likeli-

hoods from [27], called absolute pruning. This technique prunes a partial path if the image

data along it is deemed inconsistent with the partial path being on the true hand. More

specifically, the Pon and Poff image data distributions are used to decide if the summed log

likelihood image data along a partial path belongs to an edge along the true hand or not.

Defining

L = log(Pon(Ie)/Poff(Ie)) (16)

as the log likelihood value from a single data sample (here we are ignoring the cornerness

measure C(x) and image gradient orientation θI(x) and omitting the superscript P e in P e
on

and P e
off), we can regard L as a random variable which is distributed according to P̃on(L) if

the sample belongs to an edge along the true hand or according to P̃off (L) if not. (Note that

the edge strength distributions induce the log likelihood distributions P̃on(L) and P̃off (L).)

Since Ie was quantized to produce Pon(Ie) and Poff (Ie), L can only assume a finite set of

values and so P̃on(L) and P̃off (L) are sums of delta functions, depicted as weighted spikes

in Figure 10.

If we sample L repeatedly and independently m times along a path s1 . . . sm then the sum

Lm of the L’s is also a random variable. To calculate the distribution P̃on(Lm) we use the fact

that the probability distribution of a sum of two independent random variables equals the

probability distribution of one random variable convolved with the probability distribution

of the other, i.e. Pz(z = x + y) = (Px ? Py) |z=x+y. Thus P̃on(Lm) equals P̃on(L) convolved

with itself m times.

We can calculate P̃on(Lm) numerically by representing the function P̃on(L) as a discrete

sequence of equally-spaced samples (all zeros except for a small subset of values representing

the delta functions) and convolving the sequence with itself m times to obtain P̃on(Lm).

Similarly, we can calculate P̃off (Lm), which is shown side-by-side with P̃on(Lm) in Figure 11.
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Noting that the peaks in P̃on(Lm) and P̃off (Lm) have little overlap for large enough m, we

can devise a method for deciding whether to reject (i.e. prune) or accept a partial path of

m segments: reject the partial path if Lm < tm and accept it otherwise. Here tm is defined

such that

P̃on(Lm < tm) =

∫ tm

−∞
dLmP̃on(Lm) = ε, (17)

where ε is a small failure rate equal to the probability that the correct path has Lm < tm.

We experimented with absolute pruning with the occlusion process switched off and

found that it pruned paths successfully but much more conservatively than the relative

pruning technique over a range of failure rates (ε = 10−4, 10−3, 10−2). The main reason

for this conservative behavior lies in the limitation of the geometric prior, which should be

included in the absolute pruning criterion but is too weak to prevent multiple DP paths

from being geometrically distorted so as to cling to true edges. Thus many false paths have

a disproportionate number of points along true edges, and their log likelihood evidence is

comparable to that of the true path, making it difficult to prune these false paths. Even if the

prior were strengthened, however, one limitation would remain: although the P̃on(Lm) and

P̃off (Lm) distributions are quite distinct, many Lm values reflect paths which are partially

on and partially off the true hand, and it is unclear how to estimate the probability that the

pruning rule fails to reject partially on/partially off paths.

6 Multiple Hands in a Single Image

We will set up a model for M non-overlapping hands in a single image, and show that the

previous model for a single hand can be adapted with slight modification to find the MAP

multiple-hand estimate.

The prior for M independent, non-overlapping hands (sµ
1 , s

µ
2 , . . . s

µ
N), where µ labels dif-
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ferent hands µ = 1, 2, . . . , M , is:

PM({sµ
i }) =

M
∏

µ=1

P (sµ
1 . . . sµ

N ) (18)

where P (sµ
1 . . . sµ

N) is the single-hand prior from before. Similarly, the imaging model for M

independent, non-overlapping hands is modified only slightly from the single-hand imaging

model:

P (D|{sµ
i }) = {

∏

all pixels y

Poff (D(y)}
M
∏

µ=1

N
∏

i=1

pon
i (si)

Poff(si)
. (19)

Therefore, assuming all NM pixel locations {xµ
i } are distinct (i.e. no overlap between hands

and no self-intersection within hands) we get the MAP multiple-hand estimate:

MAP = argmax{sµ
i }

M
∏

µ=1

[{
N
∏

i=1

P on
i (si)

Poff (si)
}P (sµ

1 . . . sµ
N )]. (20)

Because the multiple-hand MAP estimate factors into M independent pieces, the M hands

may be recovered using the single-hand model as follows. The first hand is the MAP estimate

according to the single-hand model, i.e. argmax{si}P (s1 . . . sN |D); the second hand equals

the MAP estimate of the single-hand model that doesn’t intersect hand 1; the third hand

equals the MAP estimate of the single-hand model that doesn’t intersect hand 1 or 2; and so

forth for all M hands. In other words, the M hands may be detected by finding the top M

non-overlapping DP paths. Note that, in the absence of pruning, finding the top M hands

takes no additional time compared to finding the top hand alone, since the complexity scales

with the number of pixels in the image, not M . (Of course, if pruning is used then the

complexity will increase somewhat with M .)

To implement this, we run our standard dynamic programming algorithm to recover

the top-scoring path as the first hand. Then we find the next best-scoring path whose pixel

locations come no closer than d = 3 pixel units of any of the pixels {x1
1,x

1
2, . . .x

1
N}. The third

hand is the next best-scoring path after the second whose pixel locations {x2
1,x

2
2, . . .x

2
N} come

no closer than d pixels of any member of the set {x1
1,x

1
2, . . .x

1
N ,x2

1,x
2
2, . . .x

2
N}, and similarly

for more hands (see Figure 15).
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7 Results

Two prototype shapes q̃1, q̃2, · · · , q̃N were used, one constructed with N = 83 (for speed)

and the other with N = 101 (for reliability). σa,i was set to 0.03 (radians), and at the hinge

points we set δj = 0.5. The values σt,i and σn,i were scaled in proportion to the scale of the

prototype and will not be quoted here; their values were also increased at hinge points and

the ratio σn,i/σt,i was fixed at 2.3. The orientation map standard deviation σO was set to

0.1. The prototype was rescaled manually to match the scale of each input image.

Our template has been tested on a variety of grayscale images, some of which are shown

in Figure 12. To reduce computational complexity, all calculations were performed on a

decimated lattice (decimated by a factor of 4 in both dimensions) derived from the edge,

corner and orientation maps computed on the original image lattice. Figure 13 demonstrates

the ability of the algorithm to cope with hinge deformation.

When the occlusion process was enabled, the algorithm was able to handle severe occlu-

sions, as demonstrated in Figure 14. In these figures, the occlusion state at each point is

designated as follows: a ’+’ means state 0, a ’λ’ means state 1/2, and a circle means state 1.

We are able to detect multiple hands in a single image by finding the top few non-overlapping

DP paths, as shown in Figure 15 (with a run time of about two minutes on a Pentium 150).
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Figure 1: Sample configuration points x1,x2, . . . ,xN with arrows showing normal orienta-

tions θ1, θ2, · · · , θN on thumb.

8 Conclusion

We have described a promising algorithm for detecting flexible objects in real images. The

algorithm can handle substantial hinge deformations, occlusions and the presence of multiple

hands.

It is desirable to speed up the algorithm further and to deal with certain limitations of

the model. In particular, the first-order Markov geometric prior seems to be the weakest

xi

θi

∆x
p
i x

p
i+1

xi+1 expected
in this region

∆x̃i

Sample Configuration

θ̃i

x̃i x̃i+1

Prototype

Figure 2: The prototype displacement ∆x̃i need only be rotated by θi − θ̃i to make a

displacement prediction ∆x
p
i . xi+1 is expected in a neighborhood of x

p
i+1 = xi + ∆x

p
i .
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Figure 3: Samples of the hand prior with high standard deviations σa,i, σa,i and σa,i. (For

simplicity the hinges were removed). Observe that an excessive range of deformations is

permitted: several samples have overlapping fingers.

Figure 4: Samples of the hand prior with medum standard deviations σa,i, σa,i and σa,i

(hinges removed). The samples are fairly realistic and show a good range of variability.
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1−ε ε

β

1−β
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1−α

Figure 5: Transition probabilities among states 0, 1/2 and 1.

Figure 6: Original image on left, edge map on right.

Figure 7: Original image on left, corner map on right.
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Figure 8: On-edge probabilities Pon−edge (left), off-edge probabilities Poff−edge (center) and

log likelihood ratios log(Pon−edge/Pon−edge) (right). Each row represents results from a differ-

ent edge filter. Top: Nitzberg filter, Chernoff information=0.3541. Middle: magnitude of the

image gradient (after smoothing with a Gaussian of σ = 2), Chernoff information=0.2504.

Bottom: magnitude of the image gradient (after smoothing with a Gaussian of σ = 4),

Chernoff information=0.0877. The horizontal axis is the bin number (1-40).

s1 s2 s3 sN
. . .

. . .

Figure 9: Schematic of DP algorithm showing limited fan-out from one stage to the next.
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Figure 10: P̃on(L) on left and P̃off (L) on right.
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Figure 11: P̃on(L10) and P̃off (L10) on top row, P̃on(L20) and P̃off (L20) on bottom.
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Figure 12: Inputs on top, outputs on bottom.

Figure 13: Sample hinge deformations.

25



Figure 14: Examples of occlusions. In these figures, the occlusion state at each point is

designated as follows: a ’+’ means state 0 (i.e. unoccluded), a ’λ’ means state 1/2 (triple

point), and a circle means state 1 (occluded).

Figure 15: Two hands in one image.
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component of the Bayesian model. The local interactions of the prior are insufficient to pre-

vent such problems as self-intersection and unrealistic deformations. These local interactions

mean that points that are spatially close together, e.g. two points near the same knuckle on

opposite sides of a finger, may be separated by many points on the Markov chain and have

no direct influence on each other. Also, the current approach is only able to deal with limited

scale variations. We anticipate that more sophisticated representations involving symmetry

axes [11] and key features will help solve both problems. Learning the prior systematically

(and not merely relying on stochastic sampling experiments), as was done for the imaging

model, will improve the reliability of the model. In addition, there are many other pruning

techniques which we have not yet explored which offer more principled ways to speed up the

algorithm [21, 26].
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