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Abstract

Steepest Descent. Discrete Iterative Optimization. Markov Chain Monte Carlo (MCMC).
NOTE: NOT FOR DISTRIBUTION!!

1 Introduction

These notes discuss inference algorithms that we can use for exponential models (without hidden variables). We
cover discrete iterative updating and stochastic sampling (did not have time to cover belief propagation, simu-
lated/deterministic annealing.Other algorithms max-flow/min-cut, dynamic programming will be covered in later lec-
tures.

2 Discrete Iterative Optimization

To give context, we start by very briefly describing “continuous” methods — such as steepest/gradient descent, Newton-
Raphson — for minimizing energy functions. There are standard textbooks on these methods. The basic idea of steepest
descent is to define the update equation:
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where f(Z) is the function you want to minimize. This is guaranteed to continually decrease the value of the function
because
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COMMENT ABOUT LYAPONOV FUNCTIONS!! SUBSECTION ON LEVEL SETS!!

A problem with continuous methods is that they require discretizing ¢ and replacing equation (1) by a discrete update
rule:

Tr1 = T — AVF(E(1)), 3)

where the choice of parameter A determines how well this approximates the continuous time version in equation (1)
There is a tradeoff between how fast the algorithm is and how good is the approximation. Small A gives good
approximation but slow speed — large A increases speed but may make the approximation so poor that the algorithm
does not converge. Some possibilities are to determine A adaptively or to regularize the method. (WHAT IS A GOOD
REFERENCE??).
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Figure 1: Put a variational bound on the function you want to minimize. Then minimize this bound. Then replace with
a new bound and repeat.

Discrete iterative methods are guaranteed to converge (to local minima) and do not require choosing a step size.
They are less well-known in general, but occur frequently in vision and machine learning, so we describe them in
more detail here. Fortunately, and surprisingly, there is a general principle that underlies almost all discrete iterative
methods (despite many of them being developed independently). This principle is called majorization or variational
bounding (depending on whether you read the machine learning or the statistics literature). It includes, as a special
cases, a method called CCCP developed by the author who proved that many existing algorithms — EM, GIS, Legendre
transform optimization, discrete neural networks, Sinkhorn’s method — can all be derived as examples of CCCP and
hence of majorization/variational bounding.

3 Discrete Iterative Algorithms

Suppose we want to minimize F(Z). Majorization/variational bounding proceeds by obtaining a sequence of bounding
functions F (%, Z,) where Z,, is the current state, see figure (1). The bounding functions must obey:
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Then the algorithm &, 1; = arg ming Fp (&, ) is guaranteed to converge to a minimum of F(Z). The algorithm can
make large moves from &, to &, 1.

A special case of this approach is called CCCP (Yuille — it can be shown that most examples of variational bounding
are equivalent to CCCP). Decompose the function E(Z) into a concave E.(Z) and a convex part E,(Z) so that:
E(Z) = E.(%¥) + E,(Z). Then define the update rule:
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VEU(fn—&-l) = *VE(’(fn) (5)

By properties of convex and concave functions, this CCCP update rule is guaranteed to decrease the energy at each
time-step.

It is easy to check (FIGURE) that the CCCP is a special case of majorization/variational bounding. Because it corre-
sponds to the bound Eg (%, %) = E,(Z) + E.(Z) + (T — &) - VE(Z,).

It can be shown that several well-known algorithms used in this course — EM, GIS, Sinkhorn — can be obtained as
special cases of CCCP and hence of majorization/variational bounding (Yuille and Rangarajan — though the proofs
requires changes of variables).



Here is a simple example F(z) = zlogz + (1 — z)log(l — ) — (1/2)2? for 0 < x < 1. We can decompose
E(x) into a convex function E,(z) = xlogz + (1 — x)log(1 — ) and a concave function E..(z) = —(1/2)z2. This
decomposition gives a discrete update rule:
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3.1 Relations of Discrete Iterative to CCCP

A popular method for stabilizing gradient/steepest descent methods can be explained as an example of this discrete
iterative framework.

Eyre studies gradient flow dZ/dt = —V E(Z) and proposes to decompose E(Z) = E (Z) — E»(Z) where E;(.) and
Es(.) are convex functions (i.e., —F (&) is a concave function — so this is like a CCCP decomposition). His update
rule is:

Tip1 — T = AMVEy (&) — VEL(T141)}- 7)
This is just CCCP with the decomposition E, (Z) = E1(Z)+(1/2A)Z-Z and E.(Z) = —Eo(Z)—(1/2A)Z-Z. Observe
that Eyre’s method looks like a small modification of the basic gradient/steepest descent Z;11 — T = —A{VE(Z;).

Legendre Transforms

The Legendre transform can be used to reformulate optimization problems in terms by introducing auxiliary variables.
Let E(Z) be a convex function, define its Legendre transform to be E*(¢) = ming{ E(Z) + & - §}. It can be verified
that E* (%) is concave. We recover E(Z) by the inverse transform: F(Z) = maxg{E*(y) — ¥ - Z}.

Now suppose an energy function is expressed in CCCP form as E(Z¥) = E, (%) + E.(Z) where E,(.) is convex and
E.(.) concave. Minimizing E(Z) wrt Z is equivalent to minimizing the function E(Z, ) = E,(Z) + ¥ - 7+ E. (%)
wrt %, §j, where E1* is the inverse Legendre transform of E.(.). Minimizing (7, ) by coordinate descent (i.e. wrt
Z and ¢/ alternatively) is equivalent to performing CCCP on E(.).

4 Continous Formulations of the Weak Membrane Model

Mumford and Shah formulated image segmentation of a domain D as the minimization of a functional (called this
because it depends on functions J(Z):

E[J,B]=C / d2(I(Z) — J(Z)? + A VJ(Z) - VJ(Z)di + B / ds, (8)
D/B B

where B is a boundary that separates D into subdomains D = |J D;, with D; (Y D; =04 # j and B = |J9D;.

This is directly analogous to the weak membrane models in previous lectures but there are some important differences:
(i) the formulation is continuous in Z, (ii) the solution separates the images into disjoint sets {D;} (but the previous
weak membrane model does not — see earlier lectures). More technically, there are mathematical issues about this
formulation which for a long time meant that mathematicians did not know whether it had a well-defined minimum
(or minima). Also the continuous formulation means that although we can formally define a Gibbs distribution using
this energy functional — it is unclear whether this is a meaningful probability distribution.

It can be shown (Ambrosio-Tortorelli, Shen) that the Mumford-Shah model is the limit of a family of models of form:
B,z = C / dE(I(F) — J(@)? + A / d#(3)|T(7)]2 + B / dEHVI@)2 + e 2@, ©)

where € > 0 is a (small) parameter and ¢(z) is a potential function. Two forms of ¢(z) are ¢1(z) = (1 — z)/2 and
¢2(z) = 3z(1—z) (where z € [0, 1]). For ¢ (.) the edge set B is associated with the set of points such that ¢ (z) ~ 0,



for ¢2(.) the edge set is associated with points such that ¢2(z) =~ 1/2. As e — 0, the last two terms of the energy
function converge to the edge set integral [  ds (this is not-trivial).

This energy E[J, z;€] can be minimized (local minima) by alternative minimization (coordinate descent) since
E[J, z; €] is a convex function of J (for fixed z) and a convex function of z (for each J).

An alternative energy functional is by Rudin, Osher and Fatemi:

E[J;I]:/D|6J|df+%/D(J(f)—I(f))%’ (10)

Calculus of variations (NEED AN APPENDIX ON THIS) gives Euler-Lagrange equations:

6'{_»7(]}—1—)\(11—]), (11)

which can be solved by steepest descent (d.J)/(dt) = —V - { \gjl} + A(J — I). This is often solved by the lagged
diffusion method which requires solving:

—V AV T Vg1 Y 4+ Ay — 1) = 0. (12)

The R-O-F model can be reformulated be introducing a new variable z and an energy function:

1 .
ElJ,2] = 5/D{,z|w|2 + 21T + g /D(J — 1)2dz. (13)

Then the lagged-diffusion model is obtained as alternating minimization (coordinate descent) of E[J, z] with respect
to .J and z.

This can also be shown to be an example of CCCP (Yuille).
(WHAT ABOUT LEVEL SETS?? OTHER PROPERTIES OF R-O-F?? CHECK MEYER’s BOOK!!)

S Stochastic Sampling: MCMC Introduction

MCMC gives a way to sample from any distribution P(Z). This enables us to estimate quantities such as Z* =
argmax P(Z) or ). ¢(Z)P(Z). The advantage of MCMC is that it does not require knowing the normalization
constant Z of the distribution P(Z) = (1/Z) exp{—FE(Z)}. But MCMC is an art rather than a science.

A Markov chain is defined by transition kernel K (Z|Z"), such that - K(Z|@) = 1, V&’ and K(Z|Z') > 0. We
also require the constraint that for any ¥ and &y there exists a chain Z1, ..., Zx_1 such that K(&;|%;—1) > 0 for
i =1,..., N (i.e. so that the chain is irreducible — you can get to any state from any other state in a finite number of
moves).

An MCMC for a distribution P(Z) is a special Markov chain where the transition kernel satisfies > K (Z|y) P(y) =
P(Z) —i.e. the target distribution P(Z) is a fixed point of the chain. In practice, most MCMC are designed to satisfy
the more restrictive detailed balance condition (which implies the fixed point condition):

K(Z]g)P(§) = K(§]2)P (). (14)

To run MCMC we give an initial condition Zy and repeatedly sample from K (Z'|Z) to get a sequence &y, ..., Ty, ... SO
that for sufficiently large ¢ Z; is a sample from P(Z).



5.1 Metropolis-Hastings and Gibbs Sampler

Metropolis-Hastings is an ansatz for constructing a transition kernel that obeys the detailed balance condition. It is
specified by:

~

K(y1Z) = T(¢|#) min{1, }, fory- &) (15)
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where T'(4|Z) is a conditional distribution and K (y]y) is defined to ensure that . K (4]Z) = 1 is satisfied for all
Z. Tt can be checked that this satisfies detailed balance. The form of T'(¢|#) must be chosen to ensure that this is

irreducible.

Metropolis-Hastings can be thought of as a two stage process. First, use the proposal distribution T (| Z) to generate a
proposal . Accept the proposal with acceptance probability min{1, %} In practice, the convergence speed
of Metropolis-Hastings algorithms depends on whether good proposals can be found (we will return to this issue later

in the course).

A key property of Metropolis-Hastings algorithms (and other MCMC) is that they do not require knowing the nor-
malization constant Z of the distribution P(Z) = (1/Z)exp{—E(Z)} (observe that Z cancels in the acceptance
probability).

What is the intuition for Metropolis-Hastings? First, we sample from T'(%]Z) to propose a move to §. We accept this

move with certainty if E() < E(Z)+log ggli’)

But if E(y) > E(Z) + log Tgf"y%, then the move can still be accepted with probability. Hence, unlike steepest descent
the state of an MCMC will not get stuck in a local minima because it can always increase the energy (with probability).
However, MCMC will not converge to a fixed point but instead to a probability distribution.

(i.e. the energy decreases after allowing for the proposal probability).

Some history — the Metropolis sampler (with a very simple proposal distribution) was the first "modern” MCMC. It
was developed to sample from statistical physics systems specified by a Gibbs distribution. This was done at Los
Alamos directly after World War 2 - the story goes that they had a lot of computers (first generation) at Los Alamos
because of designing the Atomic Bomb (the Manhattan project) and wanted to find a good use for them. The first
author of the paper was Metropolis and two of the other authors were, or became, very famous. One was Edward
Teller (Hungarian Physicist) sometimes called the father of the Hydrogen bomb and later famous for advocating the
Star Wars missile defense system. A second was Murray Rosenbluth who for many years was considered the world
expert on the development of Nuclear Power based on Fusion (as used in H-bombs). By coincidence, Metropolis
apparently really like the weak membrane model (when I presented it at Los Alamos in the 1980’s).

The Gibbs sampler is another MCMC (often very simple to implement). This is usually considered to be slower than
Metropolis-Hastings (with good proposal distribution) but is easy to implement. It has transition kernels

K (Z|y) = P(xrlyn))oz/rg/r, K(@]Y) = Zp (Z]7), (16)

where z, denotes the states of a subset 7 of nodes, Z/r is the state of all the nodes except 7, x N(r) is the state of
all nodes that are neighbors of 7, and P(x,|yn () is the distribution of x, conditioned on its neighbors. p(r) is a
distribution. In words, we select a subset r of nodes with probability p(¢) and update their states by sampling from

P(zr|yn(r)) keeping the other states fixed. It can be checked that the Gibbs transition kernel satisfies detailed balance.

Simple illustration of Gibbs sampling. Consider the Ising model defined on {x;} with z; € {—1,+1}.

1
P(xy,....;xq) = Eexp{,uzgcixiﬂ}. 17

The graphical structure has nearest neighbors — i.e. site 4 is connected to sites i + 1 and ¢ — 1 so N(i) = {t — 1,7+ 1}
(except for N(1) = {2} and N(d) = {d — 1}). We let r correspond to nodes 4. Then:



P(.%‘Af/@) = P(.%‘A.%‘N(l)) = P(mi|xi+1,xi,1). (18)

To determine this, we write P(z;|7/i) = P(%)/P(Z/i). We know P(Z) and P(7/i) = >, P(Z) = F(i/i)
where F(.) is some function which we can calculate — but this is not the most direct way. It is better to observe that
P(x;|Z/) is a function of x; and /i divided by a function of /i and must be normalized (i.e., >, P(z;|%/i) = 1).
Hence P(z;|Z/i) = exp{u(xi—12; + zixiy1)}/ f(xi—1,zi+1) where, by normalization, we have f(x;_1,2;11) =
exp{u(x;—1 + zi41)} + exp{—p(z;—1 + x;41)}. Hence the conditional distributions are:

exp{p(xi—12; + xixiy1)}
exp{u(zi—1 + xit1)} + exp{—p(zi—1 + zip1)}

P(zilznay) = (19)
The moral is that the conditional distribution P(z;|2z ;) is usually straightforward to compute for MRF models

(NEED AN APPENDIX ON MRF!!). Similarly, we get P(w1]x (1)) = sopaniild— and P(zalzy)) =

exp{p(zda_124)}
exp{uzq—1}+exp{—puzrq_1}"

We now define a Gibbs sampler by selecting a site i{1, ..., d} from a uniform distribution U(.) (s.t. U () = 1/d, V).
Then we sample from P(xz;|x ;) to generate a new value for z; (tossing a biased coin). Then we sample another site
and continue.

Another use of Gibbs sampling is for data augmentation which is like an MCMC version of the EM algorithm. Recall
that EM is applied in situations where you have a distribution P(y, h|d) where y denotes variables that you want to
estimate, h is hidden variables that you do not care about, and d is the input. EM estimates y and ¢(h) (distribution
on h) by coordinate descent (alternative minimization). By contrast, data augmentation repeatedly samples from
P(y|h,d) and P(h|y,d) to generate samples y, h from P(y, h|d) (like Gibbs sampling — see above). These samples
give a non-parameter estimate {(y,|, h,)} of P(y, h|d) from which we can estimate a non-parametric distribution over
h — simply {h;} — and can estimate y* = arg max P(y|d). Unlike EM, data augmentation is guaranteed to converge
(but in practice it may be hard to known when the algorithm has converged).

DETAILED BALANCE EXAMPLE - FROM STAT 202C NOTES!!

5.2 Theory of MCMC for detailed balance

It is straightfoward to obtain converge results for MCMC (with detailed balance) but unfortunately they depend on
properties of the transition kernel which are often hard or impossible to commute (some very clever people — Diaconis,
Strook — have obtained bounds for convergence of MCMC but only with difficulty and — like most bounds — they are
only of limited use).

To study MCMC with detailed balance the key observation is that the quantity Q(z,y) = P(y)"/2K (z|y)P(z)~'/?
is a symmetric matrix. This enables us to apply linear algebra. In particular, Q(x, y) has d real eigenvectors {e*(x)}
and eigenvalues {\*} (where d is the dimension of the state « and the eigenvalues are ordered by their magnitude),
and hence can be expressed as Q(z,y) = ZZ:1 AHet(z)e” (x). It can be shown that A = 1 (corresponding to the
fixed point conditions » 5, K'(z|y)P(y) = P(x)) and that IN| < 1, i =2, ...,d. It follows that

d
KM (yla)Py(z) = P(x) + Y a3} et (x) P(z)"/?, (20)
pn=2

where K™ (y|x) is matrix multiplication of the transition kernel with itself M times, Py(x) is the initial distribution
and = -, Po(y)e(y)P(y)~ Y2, n=2,...d.

The main result is that the second term on the RHS of the equation decay exponentially fast (in M) with decay speed
determined by the magnitude of the second biggest eigenvalue A\?. This implies that samples from the MCMC converge
to samples from P(z) exponentially rapidly. The only problem is that computing A\? is often impossible.

CHECK MACKAY ON STOPPING CONDITIONS!! WHY USE MCMC?? ONLY WHEN YOU CANNOT SAM-
PLE DIRECTLY FROM P(x)!!



