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1 Introduction

This lecture describes the Lambertian model — this is the most basic model for generating images. It is a simple model
and is often a good first order approximation. Other models are significantly more complicated and difficult to deal
with. Risking an oversimplification — either use a Lambertian model or a statistical model or give up (for computer
vision — other models are very useful for computer graphics).

2 The Lambertian Model

The linear Lambertian model is

1(#) = a(@)i(@) -, (1)
where I(Z) is the image, a(Z) is the albedo, 7i(Z) is the surface normal, §'is the light source (|5] is the magnitude — the
illumination strength — and 5/|5] is the light source direction.

This model is sometimes called the cosine rule because the image depends on the cosine between the surface normal
and the light source direction.

The model is linear in the light source —i.e., I (%) = a(Z)7(Z)-51+1(Z) = a(Z)7(Z)-52 = 1(Z) = a(D)7(Z)-(51+352).
Importantly, the image I(Z) does not depend directly on the viewpoint (changing the viewpoint corresponds to spatial
warping of the intensity I(Z) — I(¢(Z)) where ¢(Z) is a spatial warping function).

There is a well-known perceptual ambiguity — it is impossible to distinguish between a convex object lit from above
and a concave object lit from below. Humans have a tendency to perceive objects to be convex. Dramatically, an
inverted face mask appears to be a real face. This is despite having additional depth cues such as binocular stereo or
structure from motion. We will discuss this and other ambiguities later in this lecture.

This linear model must be modified to account for shadows. There are two types of shadows: (i) attached shadows,
and (ii) cast shadows. We can deal with attached shadows by modifying the equation to be:

1(Z) =Y min{a(Z)ii(Z) - 5,0} )

This is no longer linear in the light source directions. This makes analyzing the model much more difficult.

Cast shadows can be modelled also — see figure (5).
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Figure 6: Top left is helmet under ambient lighting conditions. Top center is reconstruction from
projection onto the first five eigenvectors. Note the specularities have been eliminated. Top right is
the difference between original image and reconstruction. (Differences less than zero have been set
Figure 1: Examples of faces under different lighting conditions. to zero because the specularities are, by definition, positive.) The specularities are easily isolated.
Bottom row shows the same effect for an image from the dense data set.

Figure 1: Exampleimages: Faces and Helmet (specular)

Other lighting models.

There are a range of other lighting models that have been used. These are particularly good for computer graphics
where the goal is to generate an image knowing the positions and shapes of the objects and the positions of the light
sources. Computer vision addresses the harder inverse problem of determining the objects and light sources from
the image. Lambertian models are comparatively easier to invert — partly because they are linear and the lighting
is independent of the viewpoint direction. It is far harder to do this for the non-Lambertian models. Examples: (I)
Radiosity Models. (IT) Bidirectional Lighting Functions (BRDF’s). (II) Specularity models.

Shape from Shading:

Humans have the ability to estimate the shape of an object from the image intensity — or shading pattern. There has
been a lot of work on estimating shape from shading. But this is a severely ill-posed problem. Current methods make
strong assumptions — e.g. constant albedo, known light source. These assumptions are typically not valid in many real
world images.

Statistical shape from shading (ref: Potetz and Lee) proceeds by learning the statistical relations between image
intensity and depth/shape. This is learnt from a dataset obtained by using a laser-range finder and a camera. Their
results suggest that Lambertian models rarely apply in natural images.

3 Experimental Analysis of Lambertian Models

The linear Lambertian model implies that the image of an object lies in a three-dimensional space (Sha-ashua). This
implies that the image can be modeled as I(Z) = Zle a;e;(Z). Such a model can help for recognizing objects and
for tracking an object when the lighting varies.

The linear model can be investigated empirically by taking photographs of an object from different lighting con-
ditions, see figure (1). To get a set of images {I#(Z)}. We can then compute the correlation matrix K (Z, ') =
~ Zf:]:l I*(Z)I*(Z"). Then calculate the eigenvectors and eigenvalues )., K (Z, 2" )e(Z') = Ae(Z).

This analysis shows that the first five eigenvectors typically contain 90 percent of the energy (sum of all the eigenval-
ues), see figure (2). This plots . | \;/ (Zf\il A;) as a function of n where NN is the total number of eigenvalues.

The eigenvalues correspond to images of the object lit from different directions, see figure (3). We can project the
original image onto the eigenbasis to determines its best reconstruction and see which parts of the image are not
described by the model, see figure (3).

Analysis by Basri and Jacobs and by Hanrahan and Ramamoothi gives a better fit to the data and explains why five
components are needed.



Eigen- ball | parrot | phone face | helmet | helmet | helmet fire function [ infrared
vector ext | generator | detector
sparse | dense | dense | sparse | sparse | dense | denmse | dense dense dense

(right) | (both) | (right) | (right) | (right) | (right) | (both) | (right) (right) (right)

T 0.482 | 0428 [ 0.679 | 0537 | 0.320 | 0.340 | 0.388 | 0.536 0.806 0.624

2 0.844 | 0.697 | 0.832 | 0.752 | 0569 | 0540 | 0.474 | 0.687 0.879 0.805

3 0.944 0.763 0.882 0.902 0.651 0.628 0.581 0.765 0.922 0.885
4 0.965 0.815 0.920 0.921 0.728 0.746 0.655 0.816 0.936 0.915
5 0.979 | 0.847 | 0941 | 0935 | 0798 | 0772 | 0.722 | 0.852 0.918 0.927
6 0.989 | 0.872 | 0.952 | 0.945 | 0845 | 0794 | 0.750 | 0.882 0.956 0.939

7 0.991 | 0.885 | 0.963 | 0.953 | 0.881 | 0.816 | 0.795 | 0.901 0.962 0.948

8 0.993 | 0.897 | 0.968 | 0.958 | 0.905 | 0.833 | 0.811 | 0.913 0.968 0.954
9 0.995 | 0.907 | 0.972 | 0.963 | 0924 | 0848 | 0.824 | 0925 0.972 0.960
wheconlin wacniin 10 0.996 | 0917 | 0.975 | 0.966 | 0.943 | 0.861 | 0.837 | 0.933 0.975 0.965

Figure 2: Eigengraph and Eigentable
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Figure 3: Left Five panels: First five Eigenfaces. Right four panels from left to right: (i) original image, (ii) recon-
struction using first three eigenvectors, (iii) reconstruction using first five eigenvectors, (iv) residual — the difference
between the first and third panel. Observe that the errors are in “variable” parts of the image — e.g., strands of hair,
shadows near the eyes and under the nose.

4 Singular Value Decomposition (SVD)

To test the Lambertian model more for realistic objects we can try to estimate the albedo and shape from a set of
images of the same object taken under different lighting conditions. We first make a change of notation and set

b(Z) = a(2)ii(F) (we recover a(&) = |b(Z)| and () = bgg)

We can formulate this by a Gibbs distribution P(b|1) = (1/Z) exp{—E[b]}, where:

N
BB =YY (@) - b(@) - )2 3)

This can be solved (up to an ambiguity described later) by linear algebra. Change notation so that J = {J,,,} is an

M x N matrix (replacing & by p). Similarly replace b(Z) by a matrix B = {B;} and S = {S;,} (: = 1,2, 3 labels
the component of the vectors band §). Then the goal is to minimize the energy function:

3
E[B, S] = Z{Jup - ZBpiSiu}z- “)
up =1
The solution is obtained by decomposing J using SVD:

J=UDVT, st.UUT =1, vVT =1, D diagonal. (5)

Note that JJT = UDVTVDUT = UD2UT and JTJ = VD2VT. It follows that the columns of U and V are the

eigenvectors of J.J7 and J7.J respectively with eigenvalues being the diagonal elements of D? (D is diagonal so D?
is also).

Leteg(p) : k =1,2,3 and fi(1) : k = 1,2, 3 be the first three columns of U and V respectively. Then the solutions
are given by:

3

3 3
By = Zpikek(p)v Sip = Z Qir fr(1), Z-Pkiij = Dy;051=1,2,3. (6)
k=1 k=1

k=1



This result depends only on the first three elements of the diagonal matrix D. If we substitute this result back into
the energy we obtain the result vaz 4 DZ. Hence this sum helps validate whether the images really do lie on a three-

dimensional bilinear space. If they do, then Zf\; D2 =0.

The solution given by equation (6) only estimates the variables — lighting, albedo and surface normal up to an ambi-
guity. This is because the matrices P and () are only specified up to an arbitrary invertible matrix A — we can send
P ATPand Q — A7'Qand PTQ — PTAA™'Q = PTQ.

This ambiguity has nothing to do with the SVD approach. Instead it is inherent in the lambertian lighting model, as
we will now describe.

5 Ambiguity in Lambertian Models

We now describe an invariant inherent in the Lambertian lighting model. This invariance occurs even if we include
both cast and attached shadows. It relates, as we will discuss, to the ambiguity of viewing objects from different
viewpoints.

Formulate the imaging equation as:
1(Z) = max{b(Z) - 5,,,0}. (7)
n

Observe that b - 5, is invariant to the transformation b ATZ;, 5y A’1§}L. This suggests that we can only estimate

—

b(Z) up to the group of transformations A which are invertible. But there is a constraint which reduces the ambiguity
because the surface normal @7 = (n1, no, ng) must satisfy the surface consistency constraint. Any surface must obey
the — apparently trivial — constraint that if you travel in a closed loop on the surface you end up with the same height
that you started with (FIGURE!!). In differential form, this corresponds to the integrability condition:

0 ng 0 np
St = (®)
xng  Oyns

This can be obtained by the following argument. Represent the surface as (z, vy, z(z,y)). By taking derivatives wrt
x and y, we see that the vectors (1,0, z;) and (0, 1, z,) must be tangent to the surface (2, z, are the derivatives
wrt x and y respectively). Hence the surface normal 7 can be obtained as the (normalized) cross product: 77 =
W(—z% —2zy,1). It follows that n; /n3 = —z, and na/n3 = —z, and the integrability condition follows
from the identity z;, = 2y,.

The integrability condition is not consistent with the subgroup of invertible linear transformations. But it is consistent
with a subgroup of three-dimensional linear transformations given by:

b1 (x) — by (x) + abz(x)
ba(x) — Aba(x) + Bbs(x)
bs (x) — Tbs (X) ©)

To get better understanding, it can be shown that this corresponds to a transformation on the surface of form:

z(z,y) — Az(x,y) + px + vy. (10)

Here the first term A\z(z,y) is a bas relief transformation and is known to sculptures (to save material by making
sculptures with small changes in z(z, y)) and to Koenderink (see later). The other two terms correspond to adding
a plane. The whole effect is called the Generalized Bas Relief ambiguity, see figure (4). It can be shown that cast
shadows are also invariant to this transformation, see figure (5. (DETAILS).

This analysis has been extended to perspective projection (Belhumeur and Kriegman).



Figure 4: Left Panel: the correct reconstruction of a face. Right panel: a GBR transformation of a face.

Fig. 1. Left panel: convex versus concave ambiguity. A con-
vex object lit from above looks like a convex object lit from below.
Right panel: the bas-relief ambiguity. The perception of shape Fig. 2. Cube viewed from direction (0.51, 0.63, 0.58) (far-left
is relatively insensitive to a linear scaling in the viewing direc- panel) and the same cube undergoing affine transformations (re-
tion. maining panels) seen from the same viewpoint.

Figure 5: KGBR1

6 Resolving the Ambiguity

Shape from shading methods typically assume that the albedo is constant and the light source is known. This is often
sufficient to yield a unique solution (see Oliensis).

Other ways make strong assumptions about the geometry of the object being viewed. For example, Atick developed
a shape from shading method for faces which made use of a prior on the surface shade of faces — eigenheads, doing
principal component analysis on three-dimensional depth maps of faces.

Other ways to resolve these ambiguities are to make assumptions about the light source directions or the albedo
properties (for example, that albedo is piecewise smooth).

It is known that humans do not always estimate shape from shading correctly. Make-up can alter the albedo of a
face and makes its shape appear different — for example, by enhancing cheek bones. More rigourous studies have
been performed (Bulthoff, Koenderink, others) which show that there are biases in the perception of shape. In par-
ticular, Koenderink shows biases similar to the bas relief ambiguity (which relates to his theoretical studies on shape
ambiguity).

7 Geometric and Lighting Invariances

First consider geometry alone.

Suppose we have a set of points {7;} in three-dimensional space. If we transform then by an affine transformation
7; — Ar; + d (where A is an invertible matrix and @ is a vector). Then their orthographic projection onto any
two-dimension image plane is transformed by a two-dimensional affine transformation.

An affine transformation is a good approximation to the nonlinear perspective transformation (sometimes called weak
perspective). This is only valid for a limited range of the parameters of the affine transform, but we ignore this for
now.
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Fig. 3. If the lighting conditions are unknown, then it is impos- s
sible to distinguish between two objects related by a GBR )
transform.” For any image of the first object, under one illumi- r(uivz) (uzvz)

nation condition, we can always find a corresponding illumina- Fig. 5. The cast shadow boundaries, and hence the cast shad-
tion condition that makes the second object appear identical (i.e., ows, are preserved by the KGBR. S’imilar results were shown
we can generate an identical image). We show two objects un- ¢, the GBR.®

der three different, but corresponding, lighting conditions.

Figure 6: KGBR2

Now consider the geometry and the lighting. This leads to the KGBR tranformation where the shape of the object is
transformed by an affine transformation and the albedo of the object is changed similarly.

It can then be shown that for two objects related by a KGBR we can always find corresponding viewpoints and lighting
so that the objects look identical. (Where orthographic projections related by two-dimensional affine transformations
are considered to be identical).

The GBR transformation is obtained as a special case of KGBR. Where we make the additional requirements that the
two object must appear to be the same for the same viewpoint (but different lighting for each object).

SVD can also be applied to estimating the three-dimensional shape (Kontsevich and Kontsevich, Tomasi and Kanade).



