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Dimensionality reduction
• Inputs (high dimensional)

• Outputs (low dimensional)

• Goals
Nearby points remain nearby.
Distant points remain distant.
(Estimate d.)

 
rxi ∈ ℜ D  with i = 1,2,...,n

 
ryi ∈ ℜd  where d = D



Given high dimensional data sampled
from a low dimensional submanifold,

how to compute a faithful embedding?

Manifold learning



Linear vs nonlinear

What computational price
must we pay for nonlinear
dimensionality reduction?



Quick review
• Linear methods

– Principal components analysis (PCA)
finds maximum variance subspace.

– Metric multidimensional scaling (MDS)
finds distance-preserving subspace.

• Nonlinear methods

2000
Isomap,

LLE

2002
Laplacian

eigenmaps

2003
Hessian

LLE

2004
Maximum
variance
unfolding

2005
Conformal
eigenmaps



Nonlinear Methods
• Common framework

 1) Derive sparse graph (e.g., from kNN).
 2) Derive matrix from graph weights.
 3) Derive embedding from eigenvectors.

• Varied solutions
Algorithms differ in step 2.
Types of optimization: shortest paths,

least squares fits, semidefinite
programming.



In sixty seconds or less…

2000
Isomap,

LLE

2002
Laplacian

eigenmaps

2004
Maximum
variance
unfolding

2003
Hessian

LLE

2005
Conformal
eigenmaps

Compute shortest paths through graph.
Apply MDS to lengths of geodesic paths.



In sixty seconds or less…

2000
Isomap,

LLE

2002
Laplacian

eigenmaps

2004
Maximum
variance
unfolding

2003
Hessian

LLE

2005
Conformal
eigenmaps

Maximize variance while respecting
local distances, then apply MDS.



In sixty seconds or less…

2000
Isomap,

LLE

2002
Laplacian

eigenmaps

2004
Maximum
variance
unfolding

2003
Hessian

LLE

2005
Conformal
eigenmaps

Integrate local constraints from
overlapping neighborhoods.  Compute
bottom eigenvectors of sparse matrix.



In sixty seconds or less…

2000
Isomap,

LLE

2002
Laplacian

eigenmaps

2004
Maximum
variance
unfolding

2003
Hessian

LLE

2005
Conformal
eigenmaps

Compute best angle-preserving map using
partial basis from LLE or graph Laplacian.



Resources on the web
• Software

http://isomap.stanford.edu
http://www.cs.toronto.edu/~roweis/lle
http://basis.stanford.edu/WWW/HLLE
http://www.seas.upenn.edu/~kilianw/sde/download.htm

• Links, papers, etc.
http://www.cs.ubc.ca/~mwill/dimreduct.htm
http://www.cse.msu.edu/~lawhiu/manifold
http://www.cis.upenn.edu/~lsaul



Today
• Kernel methods in machine learning

– Nonlinear versions of linear models
– Ex: kernel classifiers, kernel PCA
– Relation to manifold learning?

• Parting thoughts
– Some interesting applications
– Correspondences between manifolds
– Open questions



Linear vs nonlinear

What computational price
must we pay for nonlinear

classification?

+ -+ -



Linear classifier
• Training data

  inputs
outputs

• Maximum margin hyperplane
 

rxi ∈ ℜ D

yi ∈{−1, +1}

+ -+ -
yes no



Convex optimization
• Decision boundary

• Maximum margin QP

• Hyperplane spanned by inputs
  min rw 2  such that  yi (

rw ⋅ rxi + b) ≥ 1 

  yi = sign( rw ⋅ rxi + b) 

+ -

 
 rw = α ii∑ yi

rxi
Problem is QP in
coefficients αi.



Optimization
• QP in coefficients

• Inner products
  The optimization can be expressed

purely in terms of inner products:

 

          cost:    α iα j yiy j (
rxiij∑ ⋅ rx j )

2
 

constraints:    yi α j y j (
rx jj∑ ⋅ rxi ) + b  ≥ 1

 Gij = rxi ⋅ rx j



Linear vs nonlinear

What computational price
must we pay for nonlinear

classification?

+ -+ -



Kernel trick
• Kernel function

  Measure similarity between inputs by
real-valued function:

• Implicit mapping
  Appropriately chosen, the kernel

function defines an inner product in
“feature space”:

 K(rx, r′x )

 K(rx, r′x ) =
r

Φ(rx) ⋅
r

Φ(r′x )



Example
• Gaussian kernel

  Measure similarity between inputs by
the real-valued function:

• Implicit mapping
  Inputs are mapped to surface of

(infinite-dimensional) sphere:

 K(rx, r′x ) = exp −β rx − r′x 2( )

 K(rx, rx) =
r

Φ(rx) 2 = 1



Nonlinear classification

Maximum margin hyperplane in feature
space is nonlinear decision boundary

in input space.

+ -+ -
 
r

Φ  
rx



Old optimization
• QP in coefficients

• Inner products
  The optimization can be expressed

purely in terms of inner products:

 

          cost:    α iα j yiy j (
rxiij∑ ⋅ rx j )

2
 

constraints:    yi α j y j (
rx jj∑ ⋅ rxi ) + b  ≥ 1

 Gij = rxi ⋅ rx j



          cost:    α iα j yiy jKij
ij∑

2
 

constraints:    yi α j y jKji
j∑ + b  ≥ 1

• QP in coefficients

• Inner products
  The optimization can be expressed

purely in terms of the kernel matrix:

New optimization

 Kij = K (rxi ,
rx j )



Linear vs nonlinear

What computational price
must we pay for nonlinear

classification? None.

+ -+ -



Before vs after
• Linear classifier

  Compute decision boundary from
maximum margin hyperplane.

• Kernel trick
  Substitute kernel function wherever

inner products appear.
• Nonlinear classifier

Optimization remains convex.
Only heuristic is choosing the kernel.

 
rxi ⋅ rx j ⇒ K (rxi ,

rx j )



Kernel methods
• Supervised learning

Large margin classifiers
Kernel Fisher discriminants
Kernel k-nearest neighbors
Kernel logistic and linear regression

• Unsupervised learning
Kernel k-means
Kernel PCA (for manifold learning?)



Kernel PCA
• Linear methods

PCA maximizes variance.
MDS preserves inner products.
Dual matrices yield same projections.

• Kernel trick
Diagonalize kernel matrix
instead of Gram matrix.

• Interpreting kPCA
Map inputs to nonlinear feature space,
then extract principal components.

 

Kij = K (rxi ,
rx j )

Gij = rxi ⋅ rx j



kPCA with Gaussian kernel
• Implicit mapping

Nearby inputs map to nearby features.
Gaussian kernel map is local isometry!

• Manifold learning
Does kernel PCA with Gaussian kernel
unfold a data set?

 

r
Φi −

r
Φ j

2 =
r

Φi
2 +

r
Φ j

2 − 2
r

Φi ⋅
r

Φ j

= Kii + K jj − 2Kij

≈ 2β rxi − rx j
2  for nearby inputs

No!



kPCA with Gaussian kernel
• Swiss roll

• Explanation
– Distant patches of manifold are mapped

to orthogonal parts of feature space.
– kPCA enumerates patches of radius β-1/2,

fails terribly for dimensionality reduction.

top three kernel
principal components

 K(rx, r′x ) = exp −β rx − r′x 2( )

kPCA eigenvalues
normalized by trace



kPCA and manifold learning
• Generic kernels do not work

Gaussian
Polynomial
Hyperbolic tangent

• Data-driven kernel matrices
Spectral methods can be seen as
constructing kernel matrices for kPCA.

(Ham et al, 2004)

 K(rx, r′x ) = 1 + rx ⋅ r′x( )p

 K(rx, r′x ) = tanh rx ⋅ r′x + δ( )

 K(rx, r′x ) = exp −β rx − r′x 2( )



Spectral methods as kPCA
• Maximum variance unfolding

Learns a kernel matrix by SDP.
Guaranteed to be positive semidefinite.

• Isomap
Derives kernel consistent with
estimated geodesics.  Not always PSD.

• Graph Laplacian
Pseudo-inverse yields Gram matrix for
“diffusion geometry”.



Diffusion geometry
• Diffusion on graph

Laplacian defines
continuous-time
Markov chain:

• Metric space
Distances from pseudo-inverse are
expected round-trip commute times:

∂ψ
∂t = − Lψ  

τ ij = n Lii
† + L jj

† − Lij
† − L ji

†( )



Example
• Barbell data set

Lobes are connected
by bottleneck.

• Comparison of induced geometries
+ MVU will not alter barbell.
+ Laplacian will warp due to bottleneck.
– Isomap will warp due to non-convexity.

(Coifman & Lafon)



Kernel methods
• Unsupervised learning

Many spectral methods can be seen as
learning a kernel matrix for kPCA.

• Supervised learning
Are these kernel matrices useful for
classification?
Is learning manifold structure useful
for classification?



An empirical question…
• Best case scenario

Classification labels
“follow” manifold.

• Worst case scenario
Classification labels “ignore” manifold.

after

before

after
before



Classification on manifolds
• Empirically

Class boundaries are correlated with
(but not completely linearized by)
manifold coordinates.

• How to exploit manifold structure?
How to integrate graph-based
spectral methods into classifiers?



Semi-supervised learning
• Problem

How to learn a classifier from few
labeled but many unlabeled examples?

• Solution
Learn manifold from unlabeled data.
Optimize decision boundaries to:
(1) classify labeled data correctly
(2) vary smoothly along manifold

[Zhu et al, 2004; Belkin et al, 2004]



So far…
• Algorithms

Isomap, LLE, Laplacian eigenmaps,
maximum variance unfolding, etc.

• Kernel methods
– Manifold learning as kernel PCA
– Graph-based kernels for classification

Interesting applications?



Exploratory data analysis
• Spike patterns

In response to odor
stimuli, neuronal
spike patterns reveal
intensity-specific
trajectories on
identity-specific
surfaces (from LLE).
(Stopfer et al, 2003) 



Visualization
• Tonal pitch space

Music theorists have
defined distance
functions between
harmonies, such as
C/C, C/g, C/C#, etc.
(Burgoyne & Saul, 2005)

Circle of fifths
(from MVU)



Robot localization (Ham , Lin, & Lee, 2005)

simulated environment
and panoramic views

PCA

LLE

Supervised,
improved by
Bayesian
filtering of
odometer
readings



Novelty detection?
(suggested to me this week)

• Network monitoring
How to detect that a network is about
to crash?

• Hyperspectral images
How to detect anomalies in a large
digital library of images?

Suppose that “normal”
configurations lie on or

near manifold?



Surface registration?

Unsupervised registration of non-rigid
surfaces from 3D laser scans
(figure from Anguelov et al, 2005)

Better
methods by
exploiting
manifold

structure?



Learning correspondences
¸So far:

How to perform nonlinear dimensionality
reduction on a single data set?

• An interesting generalization:
How to perform nonlinear dimensionality
reduction on multiple data sets?

(Ham, Lee, & Saul, 2003, 2005)



Image correspondences

Images of objects at same
pose are in correspondence.

http://www.bushorchimp.com



Correspondences
• Out of one, many:

Many data sets share a common
manifold structure.

• Examples:
– Facial expressions, vocalizations,

joint angles of different subjects
– Multimodal input: audiovisual speech,

terrain images and inertial sensors
How can we use this?



Learning from examples
• Given:

n1 examples of object 1 in D1 dimensions
n2 examples of object 2 in D2 dimensions
n labeled correspondences (n << n1+n2)

• Matrix form:

D2 x n2?D2 x n

?D1 x n1D1 x n



Learning correspondences

• Fill in the blanks:
How to map between objects?
How to exploit shared structure?

• Difficult nonlinear regression
Must learn shared low dimensional
manifold to avoid overfitting.

D2 x n2?D2 x n

?D1 x n1D1 x n



Spectral method

• Uncoupled graph Laplacians
Two separate problems: size (n+N1) for
object 1, size (n+N2) for object 2.

•  Coupled graph Laplacian
 Map matched inputs to same output.
 One problem of size (n+N1+N2).

D2 x n2?D2 x n

?D1 x n1D1 x n



Multiple objects
• Given:

ni examples of ith object in Di dimensions
n labeled correspondences (n << ∑iNi)

• Matrix form:

D3 x n3???
?D2 x n2??
??D1 x n1?

Richer and more general than traditional
framework for semisupervised learning…



Image correspondences
• Partially labeled examples

841 images of student
698 images of statue
900 images of earth

• From coupled graph Laplacian:

25 labeled
correspondences



Elements of Manifold Learning
• Statistics

– Discrete sampling of continuous pdf
– High dimensional data analysis

• Geometry
– Isometric (distance-preserving) maps
– Conformal (angle-preserving) maps

• Computation
– Spectral decompositions of graphs
– Semidefinite programming



Conclusion
• Big ideas

– Manifolds are everywhere.
– Graph-based methods can learn them.
– Seemingly nonlinear; nicely tractable.

• Ongoing work
– Theoretical guarantees & extrapolation
– Spherical & toroidal geometries
– Applications (vision, graphics, speech)


