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Given high dimensional data sampled
from a low dimensional submanifold,

how to compute a faithful embedding?

Nonlinear dimensionality reduction



Notation
• Inputs (high dimensional)

• Outputs (low dimensional)

• Goals
Nearby points remain nearby.
Distant points remain distant.
(Estimate d.)

 
rxi ∈ ℜ D  with i = 1,2,...,n

 
ryi ∈ ℜd  where d = D



Linear vs nonlinear

What computational price
must we pay for nonlinear
dimensionality reduction?



Yesterday
• Linear methods

 - principal components analysis (PCA)
 - metric multidimensional scaling (MDS)

• Isomap
 1. k-nearest neighbors
 2. Shortest paths through graph
 3. MDS on geodesic distances
A nonlinear method with most of the
advantages of linear ones…



Yesterday vs today
• MDS and Isomap

 - preserve global pairwise distances
 - construct large, dense matrices
 - compute top eigenvectors

• “Local” methods
 - preserve local geometric relationships
 - construct large, sparse matrices

    - compute bottom eigenvectors
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Questions for today
• How to exploit local linearity?

Manifolds are globally nonlinear,
but locally linear.

• Isn’t this an old idea?
 - k-means, k-subspaces
 - mixture models

     - self-organizing maps



How (not) to use local linearity

iterative clustering,
subspace quantization



k-means clustering
• Goal

Map each continuous input xi to a
discrete label yi ε  {1, 2, ..., k}.

• Algorithm
 1. Randomly choose k “centroids” µα .
 2. Set yi = argminα ||xi -µα ||.
 3. Set µα to mean of inputs with yi = α.
 4. Iterate steps 2-3 until convergence.



k-means clustering

• Generalizations
 - ellipsoidal vs spherical clusters

    - unbalanced vs balanced clusters
 - soft (probabilistic) assignment
 - k-lines, k-planes, k-subspaces
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Problem solved?
Can simple
iterative
clustering
algorithms,
properly
generalized,
solve the
problem of
manifold
learning?



Problem solved? No.
Iterative
clustering
algorithms
are sensitive
to initial
conditions,
with many
spurious
local minima.



Also, remember the goal…
• Inputs (high dimensional)

• Outputs (low dimensional)

• Goals
Nearby points remain nearby.
Distant points remain distant.
(Estimate d.)

 
rxi ∈ ℜ D  with i = 1,2,...,n

 
ryi ∈ ℜd  where d = D



Local vs global
Clustering algorithms do not map their
inputs into a single continuous global
coordinate system of lower dimensionality.



Locally Linear Embedding

“Think globally,
fit locally.”



Algorithm
• Steps

1. Nearest neighbor search.
2. Least squares fits.
3. Sparse eigenvalue problem.

• Properties
– Obtains highly nonlinear embeddings.
– Not prone to local minima.
– Sparse graphs yield sparse problems.



Step 1. Identify neighbors.
• Examples of neighborhoods

– k nearest neighbors
– Neighbors within radius r
– Metric based on prior knowledge

• Assumptions
– Data is sampled from a manifold.
– Manifold is well sampled.



Nearest neighbor graph
Assumptions:
• Graph is

connected.
• Neighborhoods

on the graph
correspond to
neighborhoods
on the manifold.



Step 2. Compute weights.
• Characterize local geometry of each

neighborhood by weights Wij.

• Compute weights by reconstructing
each input (linearly) from neighbors.



Linear reconstructions
• Local linearity

Neighbors lie on locally linear patches
of a low dimensional manifold.

• Reconstruction errors
Least squared errors should be small:

 
Φ(W ) = rxi − Wij

rxj
j

∑
i

∑
2



Least squares fits
• Local reconstructions

Choose weights
        to minimize:

• Constraints
Nonzero Wij only for neighbors.
Weights must sum to one:

• Local invariance
 Optimal weights Wij are invariant to

rotation, translation, and scaling.

 
Φ(W ) = rxi − Wij

rxj
j

∑
i

∑
2

� 

Wij = 1
j

∑



Symmetries

• Local linearity
If each neighborhood map looks like a
translation, rotation, and rescaling...

• Local geometry
…then these transformations do not
affect the weights Wij: they remain valid.



Thought experiment
• Reconstruction from landmarks

Clamp subset of inputs (“landmarks”),
then reconstruct others by minimizing:

with respect to xi!
 
Φ(W ) = rxi − Wij

rxj
j

∑
i

∑
2

n=2000
inputs

Number of landmarks: L = 15, L = 10, L = 5



Thought experiment (con’t)
• Locally linear reconstruction

- Very accurate for sufficiently large
number of landmarks.

- Increasingly linearized with
decreasing number of landmarks.

Number of landmarks: L = 15, L = 10, L = 5 , L = 0 ?



Step 3. “Linearization”
• Low dimensional representation

Map inputs to outputs:
• Minimize reconstruction errors.

Optimize outputs for fixed weights:

• Constraints
Center outputs on origin:
Impose unit covariance matrix: 

 
rxi ∈ ℜ D  to ryi ∈ ℜd

 
Ψ(y) = ryi − Wij

ryjj∑
i

∑
2

 
ryii∑ =

r
0

 

1
N

ryi
ryi

T = Id .
i

∑



Sparse eigenvalue problem
• Quadratic form

• Rayleigh-Ritz quotient
Optimal embedding given by bottom
d+1 eigenvectors.

• Solution
Discard bottom eigenvector [1 1 … 1].
Other eigenvectors satisfy constraints.

 
Ψ(y) = Ψ ijij∑ ryi • ryj( )  with Ψ = (I − W )T (I − W )



Summary of LLE
• Three steps

1. Compute k-nearest neighbors.
2. Compute weights Wij.
3. Compute outputs yi.

• Optimizations

 

Φ(W ) = rxi − Wij
rx jj∑

i
∑

2

Ψ(y) = ryi − Wij
ryjj∑

i
∑

2



Surfaces
N=1000
inputs

k=8
nearest

neighbors

D=3
d=2

dimensions



Translated
faces
N=961
images

k=4
nearest

neighbors
D=3009
pixels
d=2

manifold



Pose and
expression

N=1965
images

k=12
nearest

neighbors
D=560
pixels
d=2

(shown)



Lips
N=15960
images

K=24
neighbors

D=65664
pixels

d=2
(shown)



Vowels: /aa/ (“hot”) vs /ae/ (“hat”)

N=3000 log-power spectra
K=10 nearest neighbors

D=400 window size



Word-document
counts
n=5000
words
k=20

nearest
neighbors
D=31000

documents
d=3,4,5
(shown)



Linear vs nonlinear

What computational price
must we pay for nonlinear
dimensionality reduction?



Properties of LLE
• Strengths

– Polynomial-time optimizations
– No local minima
– Non-iterative (one pass thru data)
– Non-parametric
– Only heuristic is neighborhood size.

• Weaknesses
– Sensitive to “shortcuts”
– No out-of-sample extension
– No estimate of dimensionality



LLE versus Isomap
• Many similarities

–  Graph-based, spectral method
–  No local minima

• Essential differences
–  Does not estimate dimensionality
–  No theoretical guarantees
+ Constructs sparse vs dense matrix
? Preserves weights vs distances

Conformal
mapping
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Laplacian eigenmaps
• Key idea:

Map nearby inputs to nearby outputs,
where nearness is encoded by graph.

• Physical intuition:
Find lowest frequency vibrational
modes of a mass-spring system.



Summary of algorithm
• Three steps

1. Identify k-nearest neighbors
2. Assign weights to neighbors:

3. Compute outputs by minimizing:

 
Ψ(y) =

Wij
ryi − ryj

2

DiiDjj
ij∑   where  Dii = Wijj∑

 
Wij = 1  or  Wij = exp −β rxi − rxj

2( )

(sparse eigenvalue problem as in LLE)



Laplacian vs LLE
• More similar than different

–  Graph-based, spectral method
–  Sparse eigenvalue problem
–  Similar results in practice

• Essential differences
–  Preserves locality vs local linearity
–  Uses graph Laplacian

 
L = D − W                 (unnormalized)
L = I − D−1/2WD−1/2   (normalized)



Analysis on Manifolds
• Laplacian in Rd

Function f(x1,x2,…,xd) has Laplacian:

• Manifold Laplacian
Change is measured along tangent
space of manifold.

• Stokes theorem

∆f = −
∂2 f
∂xi

2i∑

∇f
M
∫

2
= f ∆

M
∫ f



Spectral graph theory
• Manifolds and graphs

Weighted graph is discretized
representation of manifold.

• Laplacian operators
Laplacian measures smoothness of
functions over manifold (or graph).

∇f 2

M∫ = f ∆f
M∫    (manifold)

Wijij∑ fi − f j( )2 = f Τ Lf       (graph)



Example: S1 (the circle)
• Continuous

– Eigenfunctions of Laplacian are
basis for periodic functions on
circle, ordered by smoothness.

– Eigenvalues measure smoothness.

θ
- ∂2 fm

∂2θ
= λm fm (θ )

fm (θ ) = sin(mθ )
cos(mθ ){ }  with λm = m2



Example: S1 (the circle)
• Discrete (n equally spaced points)

– Eigenvectors of graph Laplacian are
discrete sines and cosines.

– Eigenvalues measure smoothness.

 
ryk = cos 2π k n( ),sin 2π k n( )( )

Graph embedding from
Laplacian eigenmaps:



Example: Swiss roll
eigenvectors of
graph Laplacian



A critical view…
• LLE and Laplacian eigenmaps

– Construct quadratic form over
functions on graph.

– Take d lowest cost (but non-constant)
functions as manifold coordinates.

• Theoretical guarantees?
– When do bottom eigenvectors give

the “right answer”?
– Depends on the definition of the

“right answer”…



A critical view (con’t)
• Assumption

– Sample inputs from manifold that is
isometrically embedded in RD.

– Assume manifold is locally isometric
to an open subset of Rd , where d < D.

• Hypothesis
– Isomap’s top d eigenvectors recover

parameterization for convex subsets.
– Can bottom d (nonzero) eigenvectors

of sparse matrix method do better?
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Hessian LLE
• Assumption

Data manifold M is locally isometric
to open, connected subset of Rd.

• Key ideas
– Define Hessian via orthogonal

coordinates on tangent planes of M.
– Quadratic form Ψ(f) averages

Frobenius norm of Hessian over M.

Ψ( f ) = H f (m)
M
∫

2
dm  ∇f

M
∫

2
= f ∆

M
∫ f  



Hessian LLE

• Key ideas (con’t)
– Every function with vanishing Hessian

is linear.  (Not so for Laplacian.)
– Bottom eigenfunctions in null space

of H(f) yield isometric coordinates.
– Graph-based discretization yields

algorithm.

Ψ( f ) = H f (m)
M
∫

2
dm  ∇f

M
∫

2
= f ∆

M
∫ f  



Hessian LLE
• Three steps

1. Construct graph from kNN.
2. Estimate Hessian operator at

each data point.
3. Compute bottom eigenvectors of 

sparse quadratic form.
• What’s new?

(1) and (3) are same as before.
(2) estimates Hessian. (Details omitted.)

Ψ( f ) = H f (m)
M
∫

2
dm  



Relation to previous work
• Algorithm variant of LLE

Replaces least squares fits in LLE by
estimation of Hessian.

• Conceptual variant of Laplacian
Substitutes Frobenius norm of Hessian
for norm of gradient vector.

• Sparse matrix variant of Isomap
Also looks for isometric coordinates 
on data manifold.



Theoretical guarantees
• Asymptotic convergence

For data sampled from a submanifold
that is isometric to an open, connected
subset of Euclidean space, hLLE will
recover the subset up to rigid motion.

• No convexity assumption
Convergence is obtained for a larger
class of manifolds than Isomap.



Connected but not convex

Hessian LLE yields an isometric
embedding, but not Isomap or LLE.



Connected but not convex
• Occlusion

Images of two
disks, one
occluding the
other.

• Locomotion
Images of
periodic gait.



Algorithms

2000
Isomap

(Tenenbaum,
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Langford)
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Grimes)

What is left
to do?



Problem solved?
• For manifolds without “holes”:

– Isomap with asymptotic guarantees
– landmark Isomap for large data sets

• More generally:
– hLLE with asymptotic guarantees?
– sparse matrix method should scale

well to large data sets?
(If it seems too good to be true, it usually is…)



Flies in the ointment
• How to estimate dimensionality?

Revealed by eigenvalue gap of Isomap,
but specified in advance for (h)LLE.

• How to compute eigenvectors?
Bottom eigenvalues are very closely
spaced for large data sets.

• Must we preserve distances?
Preserving distances may hamper
dimensionality reduction.



Computing eigenvectors
• Numerical difficulty

Inversely proportional to spacing
between adjacent eigenvalues.

• Scaling to large data sets
Bottom eigenvalue spacing shrinks
with increased sampling of manifold.

• Conundrum
Finer discretization of manifold trades
off with ability to resolve eigenvectors.



Example
• Lattice model

Inputs are n sites of hypercubic lattice.
Edges connect 2d nearest neighbors.

• Fourier diagonalization
Graph Laplacian has translational
symmetry.  Eigenvectors: exp(iq•x).

• Eigenvalues
For n=∞, eigenvalues are indexed
continuously by q in [-π,π]d; no gaps!



Can we combine strengths of:
• Isomap

Eigenvalues reveal dimensionality.
Landmark version scales well.
Numerically stable.

• hLLE
Solves sparse eigenvalue problem.
Handles manifolds with “holes”.

• LLE and Laplacian eigenmaps
Aggressive dimensionality reduction
Locality vs distance-preserving maps



See you tomorrow...
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