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Dimensionality reduction

* Question

How can we detect low dimensional
structure in high dimensional data?

- Applications

— Digital image and speech libraries
— Neuronal population activities

— Gene expression microarrays

— Financial time series




Framework

- Data representation

Inputs are real-valued vectors in a
high dimensional space.

 Linear structure

Does the data live in a low
dimensional subspace?

 Nonlinear structure

Does the data live on a low
dimensional submanifold?




Linear vs nonlinear
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What computational price
must we pay for nonlinear
dimensionality reduction?




Spectral methods

- Matrix analysis

Low dimensional structure is revealed
by eigenvalues and eigenvectors.

 Links to spectral graph theory

Matrices are derived from -/ijli'\I/;f'\.;.‘
sparse weighted graphs. :" .. [

 Usefulness

Tractable methods can reveal
nonlinear structure.




Notation

* Inputs (high dimensional)
X, e R” withi=1,2,...,n

* Outputs (low dimensional)

y, € R whered < D
- Goals

Nearby points remain nearby.
Distant points remain distant.
(Estimate d.)




Manifold learning

Given high dimensional data sampled
from a low dimensional submanifold,
how to compute a faithful embedding?




Image Manifolds

(Seung & Lee, 2000)
(Tenenbaum et al, 2000)




Outline

- Day 1 - linear, nonlinear, and
graph-based methods

- Day 2 - sparse matrix methods

- Day 3 - semidefinite programming

- Day 4 - kernel methods




Questions for today

« How to detect linear structure?

- principal components analysis
- metric multidimensional scaling

- How (not) to generalize these methods?

- heural network autoencoders
- nonmetric multidimensional scaling

* How to detect nonlinear structure?

- graphs as discretized manifolds
- Isomap algorithm




Linear method #1

Principal Components Analysis
(PCA)




Principal components analysis

Does the data mostly lie in a subspace?
If so, what is its dimensionality?




Maximum variance subspace

- Assume Inputs are centered:

Y % =0

l

* Project into subspace:
y; = Px, with P’=P

- Maximize projected variance:

N 1 )
vars) = 3| P |




Matrix diagonalization

« Covariance matrix
var(y) = Tr(PCP") with C = n‘1 X.x!

» Spectral decomposition

with 4, >---> 1, >0

. Maximum variance projection

Projects into subspace
spanned by top d
eigenvectors.




Interpreting PCA

- Eigenvectors:

principal axes of maximum
variance subspace.

- Eigenvalues:

projected variance of inputs along
principle axes.

- Estimated dimensionality:

number of significant
(nonnegative) eigenvalues.




Example of PCA

0.0 0.2 0.4 0.6 0.8

elgenvalues normalized by trace

1.0

Eigenvectors and eigenvalues of
covariance matrix for n=1600

inputs in d=3 dimensions.




Example: faces

Eigenfaces
from 7562
images:

top left image
IS linear

combination
of rest.

Sirovich & Kirby (1987)
Turk & Pentland (1991)




Another interpretation of PCA:

- Assume Inputs are centered:

Y % =0

l

* Project into subspace:
y; = Px, with P’=P

 Minimize reconstruction error:

. ) ~ 2
err(y) = n 12”xi —- Px; |
:




Equivalence

« Minimum reconstruction error:

. ) . )
err(y) = n 12”3@ —- Px; |
:

- Maximum variance subspace

var) ="' Y | PX, |

Both models for linear dimensionality
reduction yield the same solution.




PCA as linear autoencoder

 Network

0000...0000

Each layer
implements a linear
transformation.

« Cost function
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Summary of PCA

1) Center inputs on origin.
2) Compute covariance matrix.
3) Diagonalize.
4) Project.
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Properties of PCA

- Strengths
—Eigenvector method
—No tuning parameters

—Non-iterative
—No local optima

- Weaknesses

—Limited to second order statistics
—Limited to linear projections




So far..
- Q: How to detect linear structure?

A: Principal components analysis

—Maximum variance subspace
—Minimum reconstruction error

—Linear network autoencoders

- Q: How (not) to
generalize for
manifolds?




Nonlinear autoencoder

 Neural network

Each layer
parameterizes a
nonlinear

transformation.

* Cost function
Minimize
reconstruction error:

err(W) = n_lz X, = Ly (hyy (gw (S (%)
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Properties of neural network

- Strengths

— Parameterizes nonlinear mapping
(in both directions).

—Generalizes to new inputs.

- Weaknesses

—Many unspecified choices: network
size, parameterization, learning rates.

—Highly nonlinear, iterative
optimization with local minima.




Linear vs nonlinear
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What computational price
must we pay for nonlinear
dimensionality reduction?




Linear method #2

Metric Multidimensional Scaling
(MDS)




Multidimensional scaling

Ys

Given n(n-1)/2 pairwise distances A,

find vectors y;such that lly-y:ll = A,.




Metric Multidimensional Scaling

 Lemma

If A denote the Euclidean distances of zero
mean vectors, then the inner products are:

Gﬁ%[Zk( e T AL ) - 2 Aj ]

- Optimization

Preserve dot products (proxy for distances).
Choose vectors y; to minimize:

err(y) = Z,-]-(Gij = Ve )




Matrix diagonalization

- Gram matrix “matching”
en(3) =Y, (Gy =55, )
- Spectral decomposition

with 4, -2 1 >0

n

- Optimal approximation
Vig = AV, for oo =1,2,....d withd <n

(scaled truncated eigenvectors)




Interpreting MDS
Vig = \/Tavai for a=1,2,....d withd <n

- Eigenvectors

Ordered, scaled, and truncated to
vield low dimensional embedding.

- Eigenvalues

Measure how each dimension
contributes to dot products.

- Estimated dimensionality

Number of significant
(nonnegative) eigenvalues.




Relation to PCA
 Dual matrices

Cop = n‘lzixiaxiﬁ covariance matnx (D X D)

G, =X *X; Gram matrix (n X n)

- Same eigenvalues

Matrices share nonzero eigenvalues
up to constant factor.

- Same results, different computation
PCA scales as O((n+d)D?).
MDS scales as O((D+d)n?).




So far..

- Q: How to detect linear structure?
A1: Principal components analysis
A2: Metric multidimensional scaling

generalize for | &35+
manifolds?




Nonmetric MDS

0
A, O
A,
A

A
1w Ay

Transform pairwise distances: A; — g(A;).
Find vectors y;such that Ilffi-}fj Il = g(A;)-




Non-Metric MDS

* Distance transformation

Nonlinear, but monotonic.
Preserves rank order of distances.

- Optimization
Preserve transformed distances.
Choose vectors y; to minimize:

err(y) = Zij( g(A) =5 -5, H)2




Properties of non-metric MDS

Strengths
—Relaxes distance constraints.
—Yields nonlinear embeddings.

Weaknesses

—Highly nonlinear, iterative
optimization with local minima.

—Unclear how to choose distance
transformation.




Non-metric MDS for manifolds?

Rank ordering of Euclidean distances is
NOT preserved in “manifold learning”.

d(A,C) <d(A,B) d(A,C) > d(A,B)




Linear vs nonlinear
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What computational price
must we pay for nonlinear
dimensionality reduction?




Graph-based method #1

Isometric mapping of
data manifolds
(ISOMAP)

(Tenenbaum, de Silva, & Langford, 2000)




Dimensionality reduction
* Inputs
X, e R” withi=1,2,...,n
« Outputs

y, € R whered < D
- Goals

Nearby points remain nearby.
Distant points remain distant.
(Estimate d.)




Isomap

» Key idea:
Preserve geodesic distances as
measured along submanifold.

 Algorithm in a nutshell:

Use geodesic instead of (transformed)
Euclidean distances in MDS.

T
NS




Step 1. Build adjacency graph.

- Adjacency graph
Vertices represent inputs.
Undirected edges connect neighbors.

* Neighborhood selection

Many options: k-nearest neighbors,
inputs within radius r, prior knowledge.

Graph is discretized
approximation of
submanifold.




Building the graph
- Computation

kNN scales naively as O(n’D).
Faster methods exploit data structures.

- Assumptions

1) Graph is connected.

2) Neighborhoods on graph reflect
neighborhoods on manifold.

No “shortcuts” connect
different arms of swiss roll.




Step 2. Estimate geodesics.

- Dynamic programming
Weight edges by local distances.
Compute shortest paths through graph.

« Geodesic distances

Estimate by lengths A of shortest paths:
denser sampling = better estimates.

- Computation
Djikstra’s algorithm for shortest paths
scales as O(n’logn + n°k).




Step 3. Metric MDS

- Embedding

Top d eigenvectors of Gram matrix
yield embedding.

- Dimensionality

Number of significant eigenvalues
yield estimate of dimensionality.

- Computation

Top d eigenvectors can be computed
in O(n?d).




Summary

e Algorithm
1) k nearest neighbors

2) shortest paths through graph
3) MDS on geodesic distances

e Impact

Much simpler than earlier algorithms
for manifold learning. Does it work?
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Examples
- Face images

it images

» Dig




Interpolations ﬂﬂm
A. Faces
B Wriste M AFIVIV

¢ Digits EEEEE

Linear in Isomap (53 [ I3 3 B

feature space. c
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Properties of Isomap

- Strengths
—Polynomial-time optimizations
—No local minima
—Non-iterative (one pass thru data)

—Non-parametric
—Only heuristic is neighborhood size.
- Weaknesses

—Sensitive to “shortcuts”
—No out-of-sample extension




Large-scale applications

Problem:

Too expensive to
compute all
shortest paths and
diagonalize full
Gram matrix.

Solution:

Only compute
shortest paths in
green and
diagonalize sub-
matrix in red.

n X n Gram matrix




Landmark Isomap

» Approximation

—Identify subset of inputs as landmarks.
— Estimate geodesics to/from landmarks.
— Apply MDS to landmark distances.

—Embed non-landmarks by triangulation.
—Related to Nystrom approximation.

- Computation
—Reduced by //n for I<n landmarks.

—Reconstructs large Gram matrix from
thin rectangular sub-matrix.




Example

E m bed d i n g Of Bob Dyl Ian | | Aeroémitlh

sl Cat Stevens

S pa rse mus i C The|Eagles ~The Beatles The Who __ Zeooelin
Similarity The Doors

g raph Jimi Hendrix
Talking Heads

Fleetwood Mac The Pglice
-Dire Straits Bryan Ferry

n = 267K The Rolling Stones

e=3.22M

/€ — 400 Suzanne Vega Alanis Morissette,
T = 6 minutes

Peter Gabriel |

Sarah MpLachIan

Tori Amos

(Platt, 2004) L




Theoretical guarantees

- Asymptotic convergence

For data sampled from a submanifold
that is isometric to a convex subset of
Euclidean space, Isomap will recover

the subset up to rotation & translation.
(Tenenbaum et al; Donoho & Grimes)

- Convexity assumption

Geodesic distances are not estimated
correctly for manifolds with holes...




Connected but not convex

eigenvalues of Isomap




Connected but not convex

* Occlusion

Images of two
disks, one
occluding the
other.

 Locomotion

Images of
periodic gait.




Linear vs nonlinear
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What computational price
must we pay for nonlinear
dimensionality reduction?




Nonlinear dimensionality
reduction since 2000...

These
strengths and
weaknesses

are typical of
graph-based
spectral
methods for
dimensionality
reduction.

Properties of Isomap

Strengths
— Polynomial-time optimizations
— No local minima
— Non-iterative (one pass thru data)
— Non-parametric
— Only heuristic is neighborhood size.

- Weaknesses

— Sensitive to “shortcuts”
— No out-of-sample extension




Spectral Methods

e Common framework

1) Derive sparse graph from kNN.
2) Derive matrix from graph weights.
3) Derive embedding from eigenvectors.

e Varied solutions

Algorithms differ in step 2.

Types of optimization: shortest paths,
least squares fits, semidefinite
programming.




Algorithms

2000 2002 2003 2004 2005

Isomap | Laplacian Hessian Maximum Conformal
(Tenenbaum, | €igenmaps LLE variance eigenmaps

de Silva, & (Belkin &  (Donoho & Uunfolding
Langford) Niyogi) Grimes)  (Weinberger & (Sha & Saul)
Saul)

Locally (Sl;(r.,, B?,d,
Linear Xiao, ¢
Embedding Diaconis)

(Roweis & Saul)




Looking ahead

 Trade-offs
Sparse vs dense eigensystems?
Preserving distances vs angles?
Connected vs convex sets?

e Connections

Spectral graph theory
Convex optimization
Differential geometry




2002 2003\ 2004 2005

Isomap / Laplacian Hessian WMaximum Conformal
(Tenenbaum\ €igenmaps LLE ariance eigenmaps

de Silva, & (Belkin &  (Donoho & Junfolding
Langford) Niyogi) Grimes),”" (weinberger & (Sha & Saul)
Saul)

Locally (Sun, Boyd,
Linear oo
Embedding

(Roweis & Saul)

Sparse Matrix Methods




Wednesday

2000 2002 2003 2004 2005

Isomap Laplacian Hessian| Maximum Conformal
(Tenenbaum, €igenmaps LLE variance eigenmaps

de Silva, & (Belkin &  (Donoho & unfoldlng
Langford) Niyogi) Grimes)

Locally (Sun, Boyd,
Linear oo
Embedding
(Roweis & Saul)

Semidefinite Programming




To be continued...

See you tomorrow.




