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Dimensionality reduction
• Question

How can we detect low dimensional
structure in high dimensional data?

• Applications
– Digital image and speech libraries
–  Neuronal population activities
–  Gene expression microarrays
–  Financial time series



Framework
• Data representation

Inputs are real-valued vectors in a
high dimensional space.

• Linear structure
Does the data live in a low
dimensional subspace?

• Nonlinear structure
Does the data live on a low
dimensional submanifold?



Linear vs nonlinear

What computational price
must we pay for nonlinear
dimensionality reduction?



Spectral methods
• Matrix analysis

Low dimensional structure is revealed
by eigenvalues and eigenvectors.

• Links to spectral graph theory
Matrices are derived from
sparse weighted graphs.

• Usefulness
Tractable methods can reveal
nonlinear structure.



Notation
• Inputs (high dimensional)

• Outputs (low dimensional)

• Goals
Nearby points remain nearby.
Distant points remain distant.
(Estimate d.)

 
rxi ∈ ℜ D  with i = 1,2,...,n

 
ryi ∈ ℜd  where d = D



Given high dimensional data sampled
from a low dimensional submanifold,

how to compute a faithful embedding?

Manifold learning



Image Manifolds

(Seung & Lee, 2000)
(Tenenbaum et al, 2000)



Outline
• Day 1 - linear, nonlinear, and

 graph-based methods
• Day 2 - sparse matrix methods

• Day 3 - semidefinite programming

• Day 4 - kernel methods



Questions for today
• How to detect linear structure?

 - principal components analysis
 - metric multidimensional scaling

• How (not) to generalize these methods?
 - neural network autoencoders
 - nonmetric multidimensional scaling

• How to detect nonlinear structure?
 - graphs as discretized manifolds
 - Isomap algorithm



Linear method #1

Principal Components Analysis
(PCA)



Principal components analysis

Does the data mostly lie in a subspace?
If so, what is its dimensionality?

� 

D = 2
d = 1

� 

D = 3
d = 2



Maximum variance subspace
• Assume inputs are centered:

• Project into subspace:

• Maximize projected variance:

 

rxi
i

∑ =
r
0

 
ryi = Prxi   with  P2 = P

 
var(ry) =

1
n Prxi

i
∑ 2



Matrix diagonalization
• Covariance matrix

• Spectral decomposition

• Maximum variance projection

 
var(ry) =  Tr(PCPT )  with  C = n−1 rxi

rxi
T

i
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C = λα

reα
reα

T

α =1

D

∑   with  λ1 ≥ L ≥ λD ≥ 0

 
P = reα

reα
T

α =1

d

∑ Projects into subspace
spanned by top d

eigenvectors.



Interpreting PCA
• Eigenvectors:

principal axes of maximum
variance subspace.

• Eigenvalues:
projected variance of inputs along
principle axes.

• Estimated dimensionality:
number of significant
(nonnegative) eigenvalues.



Example of PCA

Eigenvectors and eigenvalues of
covariance matrix for n=1600

inputs in d=3 dimensions.



Example: faces
Eigenfaces
from 7562
images:

top left image
is linear

combination
of rest.

Sirovich & Kirby (1987)
Turk & Pentland (1991)



Another interpretation of PCA:
• Assume inputs are centered:

• Project into subspace:

• Minimize reconstruction error:

 

rxi
i

∑ =
r
0

 
ryi = Prxi   with  P2 = P

 
err(ry) = n−1 rxi − Prxi

i
∑ 2



Equivalence
• Minimum reconstruction error:

• Maximum variance subspace

 
var(ry) = n−1 Prxi

i
∑ 2

 
err(ry) = n−1 rxi − Prxi

i
∑ 2

Both models for linear dimensionality
reduction yield the same solution.



PCA as linear autoencoder
• Network

Each layer
implements a linear
transformation.

• Cost function
Minimize
reconstruction error
through bottleneck:

 
err(P) = n−1 rxi − PTPrxi

i
∑ 2

…

…



Summary of PCA
1) Center inputs on origin.
2) Compute covariance matrix.
3) Diagonalize.
4) Project.
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D = 2
d = 1
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D = 3
d = 2 
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Properties of PCA
• Strengths

– Eigenvector method
– No tuning parameters
– Non-iterative
– No local optima

• Weaknesses
– Limited to second order statistics
– Limited to linear projections



So far..
• Q: How to detect linear structure?

A: Principal components analysis
– Maximum variance subspace
– Minimum reconstruction error
– Linear network autoencoders

• Q: How (not) to
   generalize for
   manifolds?



Nonlinear autoencoder
• Neural network

Each layer
parameterizes a
nonlinear
transformation.

• Cost function
Minimize
reconstruction error:

 
err(W ) = n−1 rxi − lW (hW (gW ( fW (rxi )

i
∑ 2
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Properties of neural network
• Strengths

– Parameterizes nonlinear mapping
(in both directions).

– Generalizes to new inputs.
• Weaknesses

– Many unspecified choices: network
size, parameterization, learning rates.

– Highly nonlinear, iterative
optimization with local minima.



Linear vs nonlinear

What computational price
must we pay for nonlinear
dimensionality reduction?



Linear method #2

Metric Multidimensional Scaling
(MDS)



Multidimensional scaling

Given n(n-1)/2 pairwise distances ∆ij,
find vectors yi such that ||yi-yj || ≈ ∆ij.
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Metric Multidimensional Scaling
• Lemma

If ∆ij denote the Euclidean distances of zero
mean vectors, then the inner products are:

• Optimization
  Preserve dot products (proxy for distances).
  Choose vectors yi to minimize:

 
err(ry) = Gij − ryi g

ryj( )ij∑ 2

Gij =
1
2 ∆ik

2 + ∆ kj
2( )k∑ − ∆ij

2 − ∆ kl
2

kl∑ 



Matrix diagonalization
• Gram matrix “matching”

• Spectral decomposition

• Optimal approximation

     (scaled truncated eigenvectors)

 
G = λα

rvα
rvα

T

α =1

n

∑   with  λ1 ≥ L ≥ λn ≥ 0

yiα = λα vα i   for  α = 1,2,...,d   with d ≤ n

 
err(ry) = Gij − ryi g

ryj( )ij∑ 2



Interpreting MDS

• Eigenvectors
Ordered, scaled, and truncated to
yield low dimensional embedding.

• Eigenvalues
Measure how each dimension
contributes to dot products.

• Estimated dimensionality
Number of significant
(nonnegative) eigenvalues.

 yiα = λα vα i   for  α = 1,2,...,d   with d = n



Relation to PCA
• Dual matrices

• Same eigenvalues
Matrices share nonzero eigenvalues
up to constant factor.

• Same results, different computation
PCA scales as O((n+d)D2).
MDS scales as O((D+d)n2).

 

Cαβ = n−1 xiα xiβi∑   covariance matrix (D × D)
Gij = rxi • rxj             Gram matrix          (n × n)



So far..
• Q: How to detect linear structure?

A1: Principal components analysis
A2: Metric multidimensional scaling

• Q: How (not) to
   generalize for

manifolds?



Nonmetric MDS

Transform pairwise distances:  ∆ij       g(∆ij).
Find vectors yi such that ||yi-yj || ≈ g(∆ij).
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Non-Metric MDS
• Distance transformation

Nonlinear, but monotonic.
Preserves rank order of distances.

• Optimization
Preserve transformed distances.
Choose vectors yi to minimize:

 
err(ry) = g(∆ ij ) − ryi − ryj( )ij∑ 2



Properties of non-metric MDS
• Strengths

– Relaxes distance constraints.
– Yields nonlinear embeddings.

• Weaknesses
– Highly nonlinear, iterative

optimization with local minima.
– Unclear how to choose distance

transformation.



Rank ordering of Euclidean distances is
NOT preserved in “manifold learning”.

Non-metric MDS for manifolds?

B

A
C

ABC

d(A,C) < d(A,B) d(A,C) > d(A,B)



Linear vs nonlinear

What computational price
must we pay for nonlinear
dimensionality reduction?



Graph-based method #1

Isometric mapping of
data manifolds

(ISOMAP)

(Tenenbaum, de Silva, & Langford, 2000)



Dimensionality reduction
• Inputs

• Outputs

• Goals
Nearby points remain nearby.
Distant points remain distant.
(Estimate d.)

 
rxi ∈ ℜ D  with i = 1,2,...,n

 
ryi ∈ ℜd  where d = D



Isomap
• Key idea:

Preserve geodesic distances as
measured along submanifold.

• Algorithm in a nutshell:
Use geodesic instead of (transformed)
Euclidean distances in MDS.



Step 1. Build adjacency graph.
• Adjacency graph

Vertices represent inputs.
Undirected edges connect neighbors.

• Neighborhood selection
Many options: k-nearest neighbors,
inputs within radius r, prior knowledge.

Graph is discretized
approximation of

submanifold.



Building the graph
• Computation

kNN scales naively as O(n2D).
Faster methods exploit data structures.

• Assumptions
1) Graph is connected.
2) Neighborhoods on graph reflect
    neighborhoods on manifold.

No “shortcuts” connect
different arms of swiss roll.



Step 2. Estimate geodesics.
• Dynamic programming

Weight edges by local distances.
Compute shortest paths through graph.

• Geodesic distances
Estimate by lengths ∆ij of shortest paths:
denser sampling = better estimates.

• Computation
Djikstra’s algorithm for shortest paths
scales as O(n2logn + n2k).



Step 3. Metric MDS
• Embedding

Top d eigenvectors of Gram matrix
yield embedding.

• Dimensionality
Number of significant eigenvalues
yield estimate of dimensionality.

• Computation
Top d eigenvectors can be computed
in O(n2d).



Summary
• Algorithm

 1) k nearest neighbors
 2) shortest paths through graph
 3) MDS on geodesic distances

• Impact
Much simpler than earlier algorithms
for manifold learning.  Does it work?



Examples
• Swiss

  roll

• Wrist
images

n = 1024
k = 12

n = 2000
k = 6

D = 642



Examples
• Face images

• Digit images

n = 698
k = 6

n = 1000
r = 4.2

D = 202



Interpolations
A. Faces
B. Wrists
C. Digits

Linear in Isomap
feature space.
Nonlinear in
pixel space.



Properties of Isomap
• Strengths

– Polynomial-time optimizations
– No local minima
– Non-iterative (one pass thru data)
– Non-parametric
– Only heuristic is neighborhood size.

• Weaknesses
– Sensitive to “shortcuts”
– No out-of-sample extension



Large-scale applications
Problem:
Too expensive to
compute all
shortest paths and
diagonalize full
Gram matrix.
Solution:
Only compute
shortest paths in
green and
diagonalize sub-
matrix in red.

n × n Gram matrix



Landmark Isomap
• Approximation

– Identify subset of inputs as landmarks.
– Estimate geodesics to/from landmarks.
– Apply MDS to landmark distances.
– Embed non-landmarks by triangulation.
– Related to Nystrom approximation.

• Computation
– Reduced by l/n for l<n landmarks.
– Reconstructs large Gram matrix from

thin rectangular sub-matrix.



Example

 

n = 267K
e = 3.22M
l = 400

τ = 6 minutes

Embedding of
sparse music
similarity
graph

(Platt, 2004)



Theoretical guarantees
• Asymptotic convergence

For data sampled from a submanifold
that is isometric to a convex subset of
Euclidean space, Isomap will recover
the subset up to rotation & translation.
(Tenenbaum et al; Donoho & Grimes)

• Convexity assumption
Geodesic distances are not estimated
correctly for manifolds with holes…



Connected but not convex
• 2d region with hole

• Images of 360o rotated teapot

input Isomap

eigenvalues of Isomap



Connected but not convex
• Occlusion

Images of two
disks, one
occluding the
other.

• Locomotion
Images of
periodic gait.



Linear vs nonlinear

What computational price
must we pay for nonlinear
dimensionality reduction?



Nonlinear dimensionality
reduction since 2000…

Properties of Isomap
• Strengths

– Polynomial-time optimizations
– No local minima
– Non-iterative (one pass thru data)
– Non-parametric
– Only heuristic is neighborhood size.

• Weaknesses
– Sensitive to “shortcuts”
– No out-of-sample extension

These
strengths and
weaknesses
are typical of
graph-based

spectral
methods for

dimensionality
reduction.



Spectral Methods
• Common framework

 1) Derive sparse graph from kNN.
 2) Derive matrix from graph weights.
 3) Derive embedding from eigenvectors.

• Varied solutions
Algorithms differ in step 2.
Types of optimization: shortest paths,

least squares fits, semidefinite
programming.



Algorithms

2000
Isomap

(Tenenbaum,
de Silva, &
Langford)

Locally
Linear

Embedding
(Roweis & Saul)

2002
Laplacian

eigenmaps
(Belkin &
Niyogi)

2004
Maximum
variance
unfolding

(Weinberger &
Saul)

(Sun, Boyd,
Xiao, &

Diaconis)

2003
Hessian

LLE
(Donoho &

Grimes)

2005
Conformal
eigenmaps

(Sha & Saul)



Looking ahead
• Trade-offs

Sparse vs dense eigensystems?
Preserving distances vs angles?
Connected vs convex sets?

• Connections
Spectral graph theory
Convex optimization
Differential geometry



Tuesday

2000
Isomap

(Tenenbaum,
de Silva, &
Langford)

Locally
Linear

Embedding
(Roweis & Saul)

2002
Laplacian

eigenmaps
(Belkin &
Niyogi)

2004
Maximum
variance
unfolding

(Weinberger &
Saul)

(Sun, Boyd,
Xiao, &

Diaconis)

2003
Hessian

LLE
(Donoho &

Grimes)

2005
Conformal
eigenmaps

(Sha & Saul)

Sparse Matrix Methods



Wednesday

2000
Isomap

(Tenenbaum,
de Silva, &
Langford)

Locally
Linear

Embedding
(Roweis & Saul)

2002
Laplacian

eigenmaps
(Belkin &
Niyogi)

2004
Maximum
variance
unfolding

(Weinberger &
Saul)

(Sun, Boyd,
Xiao, &

Diaconis)

2003
Hessian

LLE
(Donoho &

Grimes)

2005
Conformal
eigenmaps

(Sha & Saul)

Semidefinite Programming



To be continued...

See you tomorrow.


