Lecture 16. Structure and Latent SVM

Prof. Alan Yuille

Spring 2014

Outline

- 1. Structure SVM
- 2. Latent SVM

Structure SVM 1

Structure Max-Margin extends binary-classification methods so they can be applied to learn the parameters of an MRF, HMM, SCFG or other methods.

Recall standard SVM, for binary classification,

$$R(\lambda) = \frac{1}{2}||\lambda||^2 + C\sum_{i=1}^{M} \max(0, 1 - y_i\lambda \cdot \phi(x_i))$$

 $\{(y_i, x_i)\}$ is training data, and $y_i \in \{\pm 1\}$,

e.g. to get a plane, s.t. $\phi(x) = x$.

Decision rule: $\hat{y}_i(\lambda) = \underset{y}{\operatorname{arg max}} y\lambda \cdot \phi(x_i) = sign(\lambda \cdot \phi(x_i))$

The task is to minimize $R(\lambda)$ w.r.t λ which maximize the "margin" $\frac{1}{||\lambda||}$. Here is a more general formulation that can be used if the output variable y is a vector $y = (y_1, \ldots, y_n)$. i.e. it could be the state of an MRF, or HMM, or a SCFG.

$$R(\lambda) = \frac{1}{2}||\lambda||^2 + c\sum_{i=1}^{M} \Delta(y_i, \hat{y}_i(\lambda))$$

decision rule: $\hat{y}_i(\lambda) = \underset{u}{\operatorname{arg max}} \lambda \cdot \phi(x_i, y)$

the error function $\Delta(y_i, \hat{y}_i(\lambda))$ is any measure of distance between the true solution y_i and the estimate $\hat{y}_i(\lambda)$ to obtain binary value.

Binary is a special case:

(i) set $y_i \in \{-1, 1\}$

(ii) $\phi(x,y) = y\phi(x)$

(iii) $\Delta(y_i, \hat{y}_i(\lambda)) = \max(0, 1 - y_i\lambda \cdot \phi(x_i))$ Hinge loss because the function is 0 if $y_i\lambda \cdot \phi(x_i) > 1$ i.e. point is on the right side of the margin and the function increases linearly with $\lambda \cdot \phi(x_i)$

(iv)
$$\hat{y}_i(\lambda) = \underset{y}{\operatorname{arg max}} y\lambda \cdot \phi(x)$$

This more general formulation is

$$R(\lambda) = \frac{1}{2}||\lambda||^2 + C\sum_{i=1}^{M} \Delta(y_i, \hat{y}_i(\lambda))$$
$$\hat{y}_i(\lambda) = \arg\max_{y} \lambda \phi(y, x_i)$$

(*)This requires an inference algorithm for binary classification inference like in the last few lectures.

(*)Also need to be able to maximized $R(\lambda)$ to find λ . It is hard because the error term $\Delta(y_i, \hat{y}_i(\lambda))$ is a highly complicated function of λ

Modify $R(\lambda)$ to an upper bound $\bar{R}(\lambda)$:

$$\bar{R}(\lambda) = \frac{1}{2}||\lambda||^2 + C\sum_{i=1}^{M} \max_{\hat{y}} \{\Delta(y_i, \hat{y}) + \lambda \cdot \phi(x_i, \hat{y}) - \lambda \cdot \phi(x_i, y_i)\}$$

which is convex in λ .

To get this bounds use two steps:

(Step 1)

$$\max_{\hat{y}} \left\{ \Delta(y_i, \hat{y}) + \lambda \cdot \phi(x_i, \hat{y}) \right\} \ge \Delta(y_i, \hat{y}_i(\lambda)) + \lambda \cdot \phi(x_i, \hat{y}_i(\lambda))$$

(Step 2)

$$\lambda \cdot \phi(x_i, \hat{y}_i(\lambda)) \ge \lambda \cdot \phi(x_i, y_i)$$

Note: bounds are "tight" because if we can find a good solution then $y_i \approx \hat{y}_i(\lambda)$.

How to minimize $R(\lambda)$?

Several algorithms (hot topic)

Some in dual space – like original SVM for binary problem.

Sample: Stochastic gradient descent.

Pick example (x_i, y_i) , take derivative of $R(\lambda)$ w.r.t λ

$$\lambda^{t+1} = \lambda^t - \beta^t(\phi(x_i, \hat{y}^t) - \phi(x_i, y_i))$$

where $\hat{y}^t = \arg \max_{\hat{x}} \Delta(y_i, \hat{y}) + \lambda \cdot \phi(x_i, \hat{y})$

Note: inference algorithm must be adapted to compute this.

2 Latent SVM

How to extend to module with latent (hidden) variables? Denote these variables by h with decision rule $(\hat{y}, \hat{h}) = \arg\max_{x \in \mathcal{X}} \lambda \cdot \phi(x, y, h)$

Training data $\langle (x_i, y_i); i = 1, \dots, M \rangle$. The hidden variables are not known.

Loss function $\Delta(y_i, \hat{y}_i(\lambda), \hat{h}_i(\lambda))$ depends on the truth y_i , the estimate of $\hat{y}_i(\lambda), \hat{h}_i(\lambda)$ from the model

$$R(\lambda) = \frac{1}{2}||\lambda||^2 + C\sum_{i=1}^{M} \Delta(y_i; \hat{y}_i(\lambda), \hat{h}_i(\lambda))$$

nontrivial function of λ replaces $R(\lambda)$ by

$$\bar{R}(\lambda) = \frac{1}{2} ||\lambda||^2 + C \sum_{i=1}^{M} \max_{(\hat{y}, \hat{h})} (\Delta(y_i; \hat{y}, \hat{h}) + \lambda \cdot \phi(x_i, \hat{y}, \hat{h})) - \max_{h} \lambda \cdot \phi(x_i, y_i, h)$$

$$f(\lambda) = \max_{(\hat{y}, \hat{h})} (\Delta(y_i; \hat{y}, \hat{h}) + \lambda \cdot \phi(x_i, \hat{y}, \hat{h}))$$

$$g(\lambda) = -\max_{h} \lambda \cdot \phi(x_i, y_i, h)$$

Here $f(\cdot)$ is convex and $g(\cdot)$ is concave.

To show convexity and concavity. Suppose

$$\tau(\lambda) = \sum_{i=1}^{M} \max_{\hat{y}_i} \lambda \cdot \phi(x_i, \hat{y}_i)$$

convex if $\tau(\alpha \lambda_1 + (1 - \alpha)\lambda_2) \le \alpha \tau(\lambda_1) + (1 - \alpha)\tau(\lambda_2)$

$$\tau(\alpha \lambda_1 + (1 - \alpha)\lambda_2) = \alpha \sum_{i=1}^{M} \max_{\hat{y}_i} \alpha \lambda_1 + (1 - \alpha)\lambda_2), \phi(x_i, \hat{y}_i)$$

$$\alpha \tau(\lambda_1) + (1 - \alpha)\tau(\lambda_2) = \alpha \sum_{i=1}^{M} \max_{y_i} \{\lambda_1, \phi(x_i, \hat{y}_i)\} + (1 - \alpha) \sum_{i=1}^{M} \max_{y_i} \lambda_2 \phi(x_i, \hat{y}_i)\}$$

but

$$\max_{\hat{y}_i} \alpha \lambda_1 \phi(x_i, \hat{y}_i) + \max_{\hat{y}_i} \{ (1 - \alpha) \lambda_2 \phi(x_i, \hat{y}_i) \} \ge \max_{\hat{y}_i} \{ (\alpha \lambda_1 + (1 - \alpha) \lambda_2) \phi(x_i, \hat{y}_i) \}$$

In order to solve the optimization problem we apply the CCCP algorithm.

Two steps:

Step 1:

$$\frac{\partial g(\lambda^t)}{\partial \lambda} = -\phi(x_i, y_i, h^*)$$

where $h^* = \underset{h}{\operatorname{arg max}} \lambda^t \phi(x_i, y_i, h)$, λ^t is the current estimate of λ . This reduces to a modified SVM with known state:

$$\min_{\lambda} \frac{1}{2} ||\lambda||^2 + C \sum_{i=1}^{M} \max_{(y,h)} \{\lambda \cdot \phi(x_i, y_i, h) + \Delta(y_i, y, h)\} - C \sum_{i=1}^{M} \lambda \cdot \phi(x_i, y_i, h_i^*)$$

Note: similarities to EM:

Step 1 involves estimating the hidden state h_i^*

Step 2 estimate λ

repeat until convergence.

Note: like EM, there is no guarantee that this will converge to the global optimum.

3 Multi-Class Multi-State SVM

$$L_p(\omega, z, \alpha) = \frac{1}{2} |\omega|^2 + c \sum_{i} z_i - \sum_{i} \sum_{y} \alpha_y^i (z_i - l(y, y_i) - \omega \phi(x_i, y) + \omega \phi(x_i, y_i))$$

solution: $\hat{y}(x,\omega) = \arg\max_{x} \omega \phi(x,y)$

constraint:

$$z_i - l(y, y_i) - \omega \phi(x, y) + \omega(x_i, y_i) \ge 0$$
$$z_i \ge \max_{y} \{ l(y, y_i) + \omega \phi(x_i, y) - \omega \phi(x_i, y_i) \}$$

$$\frac{1}{2}|\omega|^2 + c\sum_i \max_y \{l(y, y_i) + \omega(x_i, y) - \omega(x_i, y_i)\}$$

Note: no need to separately impose $z_i \ge 0$ because if we set $y = y_i$, we see $z_i \ge l(y_i, y) = 0$ Solve the primal problem:

$$\frac{\partial L_p(\omega, z, \alpha)}{\partial \omega} = 0 \Longrightarrow \omega = \sum_i \sum_j \alpha_y^i \{ \phi(x_i, y_i) - \phi(x_i, y) \}$$

note: if $\omega \phi(x_i, y_i) > \omega \phi(x_i, y) + l(y_i, y)$ then $\alpha_y^i = 0$

$$\frac{\partial}{\partial z_i} L_p(\omega, z, \alpha) = 0 \Longrightarrow c = \sum_y \alpha_y^i$$

so α_y^i is a probability distribution.

This gives solution $\omega(\alpha), z(\alpha)$, substituting them gives the dual energy:

$$L_x(\alpha) = L_p(\omega(\alpha), z(\alpha), \alpha) = \sum_i \sum_y \alpha_y^i l(y, y_i) - \frac{1}{2} \sum_{i,j} \sum_y y_i z \alpha_y^i \alpha_z^j$$

The case of binary classification can be recovered by setting

$$l(y, y_i) = \begin{cases} 1 & y \neq y_i \\ 0 & y = y_i \end{cases}$$