8.5 W OPTIMIZATION AND NONLINEAR PROGRAMMING

An optimal solution is an admissible solution of minimum cost. That is easy
but it contains a lot. It means, first, that there is a cost Junction

minimized. It also implies some admissibility constraints on x: the flg
equal the flow in, or capacities cannot be exceeded, or the structure mu
the load. If x represents a set of prices, or a set of shipments, or a set of
they cannot be negative. The constraints probably prevent (he COst C frop,
reaching its absolute minimum, and the problem is one of constrained Optimizatioy,

Without constraints, the minimization of C(x) is an ordinary problep, >
calculus. When x is a vector we need multivariable calculus, and whep it is 4
function we need the calculus of variations, but these just give extensions of the
same basic idea: The derivative ¢’ should be zero at the minimum. That 18 the
grandfather of all optimality conditions! The constraints seem to destroy this
simple rule, and the chicf goal of the theory is to save as much of it as possible.

Thanks to Lagrange, it is almost entirely saved. We look first at the case of lineyy
constraints, then at nonlinear constraints, and finally at inequality constraints, In
cach case there is a test on the derivative C’ at the optimal point x*, but it applies
only in the directions permitted by the constraints. In the other directions we cannot
move from x* without leaving the admissible set. This is clear from the geometry,
and we will rely more than usual on insight and examples. At the end, however, it is
mathematics that produces the critical quantities—the Lagrange multipliers y.
They convert the constrained minimization of C(x) into an unconstrained minimiz-
ation of L(x)= C(x)+ y"(A(x) — b). A chief object of this section is to find and
understand these magic numbers y.

Before we start, it is worth thinking for a moment about inequality constraints.
Suppose there are m of them, linear or nonlinear, and they are written as Ai(x) < b,.
At the optimal x* they fall into two groups—those for which there is equality
A;(x*)=b, and a “tight” constraint, and those for which there is strict inequality
A;i(x*) < b;. The first constraints are active at x*, the others are inactive. As far as
inactive constraints are concerned, the test for a minimum hardly notices them.

- They will be satisfied by any x near x*, and their Lagrange multipliers y; will be
zero. Itis the active constraints that need Lagrange multiplicrs. When A (x*) — b;is
zero, y; is almost certainly nonzero; it measures the force of the constraint,
preventing A4,(x) from exceeding b; as it would like to.

One or the other of these quantities, either y, or Ai(x*) — b;, is always zero. In the
case of equality constraints, A;(x*) = b; is zero because that is the constraint. In
every case the product y;(4,(x*) — b;) is zero, and the sum of all m products—which
is the inner product of y with A(x*) — b-—is also zero:

to Sa
C(x) 1o b):;
W out m

St Withstand
Probabiligje

WA(x*) = b) =0. (1

This is the complementarity condition, a nonlinear copy of the previous section’s
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y(Ax —b)=0. The zeros in y (we should really write y*) are in complementary
positions to the zeros in A(x*)—h. When b; is large, and the ith material is
oversupplied, the constraint 4,(x)<b; is not really restrictive. The material
becomes a free good, and its price y; drops to zero. At an equilibrium point x*, each
Lagrange multiplier y, tells the real price of its constraint—by revealing how much
a small change in b; would affect the minimum cost.t

You might say that (1) must automatically hold. if the constrained minimum of C
and the unconstrained minimum of L= C + y{(Ax — b) are the same. That is true!
The y; have the remarkable property that the minima of C and L arc attained at the
same point x*. Of course the y; arc not known—they might be regarded as the
fundamental unknowns, if the final unconstrained problem is easy—and it cannot
be predicted in advance which of them are nonzero. We do not know which -
constraints are active, until the whole problem is solved. Just as in the simplex
method, the correct y; emerge at the same time as the correct x;.

Numerically, the simplex method is a very limited model for solving nonlinear
programs. For quadratic programming—when C is a quadratic and the constraints
are linear equations and inequalities—you can see what will happen. Moving
along an edge of the feasible set, the cost looks like a parabola. It is decreasing at
the start of the edge or we would not move. If it is still decrecasing at the end, we
stop there. But unlike the linear case, a parabola may start down and later go up;
in that case we stop at its minimum, and take the next step from there. This requires
only small changes in the simplex method, and quadratic programming is not
excessively hard—but the minimum may occur inside the feasible set. The solution
is not always at a corner.

For a general nonlinear program there are many possibilities, and no algorithm
is the clear winner. We will choose a direction d, in which to move from the current
guess x,. We may conduct a line search in that direction—to find the new
Xy 41 = X, + sd, that minimizes the cost C{x) while remaining admissible (or closec
Lo it), This search is one-dimensional, with a scalar unknown—the step size s. The
direction d,, is the eritical choice. Frequently the gradient of C is projected onto the
subspace of directions permitted by the active constraints (as Karmarkar did). It is
like Newton’s method, linearizing near the current x, and venturing a step on the
basis of C'. In fact Newton's method becomes a quadratic program at each step; the
cost and the active constraints are decided at x;. That may be the best. At the end of
the step new constraints will be active, just as one component became nonzero and
another became zero in each simplex step. But nonlinear constraints bring extra
difficulties, and a full discussion is hardly possible.

We might remark on the choice between minimizing C and solving an equation
like C' + yA" = 0. With inequality constraints most algorithms choose the minimiz-
ation; with equality constraints L' = C’ + yA’ =0 becomes reasonable. In struc-
tural optimization there was a war between these two camps, recently settled by a

+When b; goes up by d, more vectors x become admissible and the minimum cost goes
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[

compromise—in which the multipliers y are improved at the same time g5 the
primal unknowns x. Duality won again.

Conditions for a Constrained Minimum

Imagine that the cost function C(x) has a bowl-shaped graph. If it comes from 5
positive definite matrix, C(x) =3x" Mx, then the bowl is perfect. Its cross-sections
C = constant, called “level curves” or “level surfaces,” are ellipsoids. In general ¢
will not be exactly a quadratic and the graph will be more uneven; its level curves
are sketched in Fig. 8.9. The inner curves come from the low values of C, near the
bottom of the bowl. The cost increases as we move out and up the bowl. The
problem is to find the lowest point that satisfies the constraints, and we proceed in
four steps.

1. To begin, let there be one equality constraint and let it be linear: a; x, + -..
+ a,x, = b. Thisis A(x) = b. It gives a vertical plane that slices through the graph of
C. The constrained problem looks for the lowest point of their intersection, the
minimum of C(x) subject to A(x) = h. The idea is to look down from above on the
graph of C, and watch what happens at that lowest point x*—marked P in Fig. 8.9,
The level curve through P is tangent to the cutting plane Ax = b.t

Fig. 8.9. Constraint A(x)= b tangent to level curve at the solution x*.

When two surfaces A(x) = b and C(x) = constant are tangent, their perpendicular
directions are the same. One perpendicular comes from the vector a = (a;, .- ),
and the other comes from the gradient C'=(3C/¢xy, ..., dC/0x,). Since these
vectors are in the same direction, the gradient must be a multiple of a:

C’ + ya =0 for some multiplying factor y. (2)

That is the key to constrained optimization. The partial derivatives of C may not bf
zero at the point P, but the derivatives of C + yA are zero. There are n+t

+The level curve cannot pass through the plane, or there would be an even lower level
curve inside it still touching the plane. Since the curve just touches at P, it must be tangent:



unknowns x,, ..., x,, y, and n + 1 equat

curved instead of flat, but it is still tang

ions

aC
& o, ..., = + ya, (3)
ﬁx‘ S OXy
EXAMPLE1 Minimize C = 1(xt + x3) subject to xy + 8x, = 34.
The n+ 1 =3 equations are
& ya, =0, or  xi+y=0
Okl
ac
— +ya,=0, or x3+8y=0
0x,
A(x)=b, or x;+ 8x, =34
To solve them, x, = —y*’> and x, = —2y'13 give
X, +8x,= — 17y =34 or yl3=—-2 or y=-8
‘The point P has x; =2, X, = 4, and the minimum is C = 1(16 + 256) = 68.
2. The step to one nonlinear constraint is easy. The surface A(x)= b becomes

ent to the level surface of C at the pomt

+* — P. Therefore the two perpendicular vectors still go in the same direction. One is

C’, as before, and the other is A’. Previously, A(x)=a;x; + -

and its gradient was always A =(ay, ..

. + a,x, was linear
,a,). Now A’ varies from point to point, as

¢’ does, but what matters is the 51tuat10n at P—-where they are in the same

direction: "'+ yA4' =0 for some multipli
surface is a circle x} +x3=1.

ier y. In the next example the constraint

EXAMPLE 2 Minimize C = ax? + 2bx, x, + ¢x3 subject to xP4xi=1

The n+ 1 equations are

aC iA

— 4y— =0, or

0x4 04

cC GA
+y=——=0, or

0Y2 C\2
A(x)=bh, or

Cancelling the factor

2(ax, +bxy +yx;)=0

2bx, + exy + YXa) = 0

x2+xi=1

2. the first equations arc

ax, +bx, = —yx, a b||x Xy
) or =Y .
bx, + ¢x, = —yx, b ¢ X, Xy
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Thus the optimal x = (x,;, x,) is an eigenvector of this matrix M; we have Mx =
— yx. The minimum value of C is exactly the smallest eigenvalue, since

b i 25
C=[x xZ][z C] [zzjl}’[xl xz]lii :I—y.
’ X2

Geometrically, the level curve of C is an ellipse that touches the circle x7 + x3 = 1 at
the ends of its longest axis—and that axis points along the eigenvector. It is like
minimizing the Rayleigh quotient

ax? +2bx,x, +cx3  xTMx

X1 +x3 %1%

For any symmetric matrix, of any size, the minimum of C(x) = xTMx subject to
xTx =1 is the smallest eigenvalue of M.

3. The next step is to admit two or more constraints. Separately they are
A,(x) = b;, and collectively (in a vector equation) they are A(x) = b. If they are linear,
the gradients A} are the rows of a fixed matrix. If they are nonlinear, the 4; depend
on x. In cither case, the minimizing point P must satisfy A(x) = b. If we move away
from P, staying on the surface A(x) = b, the cost C(x) must not decrease; otherwise
P would not be minimal. Therefore the vector C’, which is orthogonal at P to the
surface C = constant, must also be orthogonal to the surface 4(x) = b.

('’ is orthogonal to
' line and surface

level
surface —>
C(x)=

line Ax="b

Fig. 8.10. The derivative " at x* is orthogonal to A(x)=b.

When there was one constraint, this orthogonality determined the dirfectlon_ of
C’. With more constraints the surface A(x) = b will be lower dimensional, like a line
in three dimensions, and many directions are orthogonal to it. The gradient C' goes
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in one of those directions (Fig. 8.10), so
C' 4y AL+ -+ v, A, =0 for some multiplying factors y;. 4)

That is subtle but important. Think of the lincar case, with constraint Ax = 0. The
admissible x are in the nullspace of A. Fach row of A is orthogonal to the nullspace,
and C’ can be any combination of those rows. That is equation (4), which has n +m
unknOWNS X, o5 Xpo Y1 ooos Ve There are also n + m equations, the n given by (4)
and the m constraints. They are combined by saying that al/ partial derivatives of
L =C + y(Ax — b) are zero:

(5)

The last m equations are the constraints A(x) = b.

EXAMPLE 3 Minimize C = 1xTHx — x'f subject to Ax=bh.
The gradient C’ 18 Hx —f and the n+m equations are

aL/éx; =0 Hx+ ATy =f [H Al][x] [f]

o or .= : (6)

aLjoy; =0 Ax =b A 0 y! b

These are the all-important equations from Chapter 2, with the notations reversed:

x>y, bef, Aer AT. We denoted the matrix by H, since C is now cost, and y has

become a row vector: y Ay + o+ y A is AT yT. But the underlying problem is

identical with the one in Chapter 2, to minimize & quadratic with linear constraints.
Figure 8.10 has C — 1(x? + x3 + x3), with spheres as level surfaces. The rows

from the constraint are A7 = [1 0 0]and A,=[0 1 2]. At the solution C' 18

A, and the optimality condition (4) is satisfied.

t:-,q

4. The final step is to allow inequality constraints. They may be active ofr
inactive— either they alter the minimum or they don’t. Both possibilities appear in
the simplest problem, to minimize the number x* subject t0 X = b. 1f b is positive, the
minimum of x* is at x =0. It is the absolute minimum and whether b =10 or
b — 1000 makes no difference. But if bis negative, and x =01s inadmissible because it
violates x < b, the minimum is changed. It occurs where x equals b. The constraint
becomes active, and it changes the minimum of x? from 0 to b*.

How is this reflected in the Lagrange multiplier y? When the constraint is active,
the derivatives of x% 4+ y(x — b) are

dL
2 =2x+y=0
ix

6L

5]

= x—b=0.
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Thus y = —2b.1 When the constraint is inactive, the multiplier y is zero and the
minimum is zero (at x =0).

The pattern is the same when there are n unknowns and m constraints, and it is
the fundamental condition for optimality:

8H (Kuhn-Tucker optimality conditions) The minimum of C(x,, ..., x,) subject to
A,(x) < b; occurs where

e ye iy oei) I g
(—)\xj Y1 axJ Yo axj =Uj=1L1 ... (7)
with y and x also subject to
120, A(x) < by, ylAdx) =b)=0,i=1,...,m. (8)

There arc n -+ m equations, but we cannot predict in (8) whether y; = 0 or 4,(x) = b;.
Fither the constraint is active or the multiplier is zero; the right equation is not
known in advance.

In a full-scale treatment of optimization we would have to discuss the extra
hypotheses that make this literally true. First, the functions C and A; have been
assumed smooth. If the graph of C has a corner, there is a whole family of
“derivatives” and any one is acceptable in (7). Second, the vectors A4} should be
independent at the minimizing point or the y; are not well determined. Third, and
most important, the functions C and 4; should be eonvex (see below). Convexity is
the prime requirement in proving that there is a constrained minimum. Without it
the solution to (7-8) can be a saddle point, or a maximum, or fail to exist. With a
strengthened form of convexity, the minimization succeeds.

EXAMPLE 4 (Linear programming) Minimize C=c xy + - +,X, subject 10
Ax <b.
The equations (7) in vector notation are c+yA=0, and (8) is complementary
slackness:

y=>0, Ax < b, y(Ax — b} =0. ©9)
They are the optimality conditions connecting the primal to the dual, when there1s
no sign constraint on x.

This is an example in which C is convex but not strictly convex—its second
derivatives are zero. The zero matrix is positive semidefinite but Certail}lbj not
positive definite. Therefore the minimum may fail to exist. Itis —oc, if we minimize
2x subject to x < 4. .

In the final example C is strictly convex; the matrix H is to be positive definite.

+ v is the derivative of the minimum value x* = b2, but with opposite sign.
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EXAMPLE 5 (Quadratic programming) Minimize C=%x"Hx subject (o
%1 < by iacime=ibi
There are n constraints, 1 multipliers Vi and n + n equations:

(7) becomes Hx + yr=0 (10)
(8) becomes y = 0,x<b ylx—b)= 0. (11)

For n=1 we are back to the two possibilities x = b (active constraint) or y =0
(inactive constraint). For n=2 it is reasonable to test all four possibilities. As n
increases, the number of combinations climbs to 2% each constraint can be active or
inactive. For large n a good algorithm finds the right combination without trying
them all.

Convex Functions

We need to know which functions C(x) fit naturally into these minimum
problems. They will not be the only functions that can be minimized, but they are
the best ones. They were described earlier in terms of a “bowl-shaped graph” —
which was intuitively correct but not overwhelmingly precise. The right description
is in the definition of a comvex function, which extends one of the basic ideas
of calculus—that the second derivative satisfies f"=0 at a minimum.
The first requirement is f'=0, and in our constrained problems that became
I/ =C +yA =0. Without this first-order condition, a point is not even a
candidate for a minimum. But for points which survive that test, there has to be
a second-order condition (involving the second derivatives of L) to distinguish
between minima and maxima and saddle points. A convex function will pass that
second-order test, and a strictly convex function will pass with something to spare.

A convex function is defined in the same way as a convex sct:

A set E is convex if the line segment between any two of its points stays within
the set.

A function F is convex if the line segment between any two points of its graph
lies on or above the graph.

If all line segments go strictly inside the set E, or strictly above the graph of I, then
the set or the function is stricily convex. There are no flat segments on the boundary
of the set or on the graph. A function F(x)=constant, or a linear function
F(x)=a"x, or a feasible sct in linear programming, is convex but not strictly
CONVEX.

There are three ways to test for convexity. The first two come directly from the

definition and the third, which extends f” =0, is provided by calculus.

(1)jilizeRetiefipeints on or above the graph of f should be a convex set. This set
is called the “gpigraph.”

(2) i AtCED point X =cxy + (1 — ¢)x, between x, and x,, the value of F(x) must
not be above the straight line value cF(x,)+ (1 — ) F(x,):
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Flex; +(1 —¢)xa) < cF(x))+ (1 —)F(x,) forO0<c<1. (12)

(3~} Th_e matrix H of s:econd derivatives of F, H, = 52F,f‘8x,~c?xj, must be positive
semidefinite at every point.

The link between test 2 and test 3 comes from Taylor series expansions:
F(x)=F(x{) + (x —x;)"VF(x;) + 4(x — x)TH(x — x,) + cubic terms,

Expanding both sides of (12), the quadratic terms produce (x, —x1)"H(x,
—x;) > 0. This is the positive scmidefiniteness of H. It means that all eigenvalues of
H are =0, all pivots are =0, and all symmetrically placed subdeterminants are
= 0. If H is positive definite, these numbers are strictly positive, (12) is true with
strict inequalitics, and F is strictly convex.

EXAMPLE The third test confirms the convexity of F, = x* + y° and it refutes the
convexity of F, = x?y® The function F, is not convex even though x2 and 2 are
separately convex. The matrices H, called second gradients or Hessians, are easy to
find from the second derivatives of F, and F,:

12x? 0 2)}2 4xy
H, = d H,= ]
! [ 0 30y4:| an ? [4){}’ 2X2:|

The determinant of H, is negative so one of its eigenvalues must be negative. The
graph of F, is a parabola in the x and y directions, but overall it cannot be convex.
F,=xy*is zero at x=0, y=2 and also at x =2, y =0, but between them it is
positive. It goes above the line segment connecting those points, and all tests for
convexity must fail.

This definiteness condition on the second derivatives is completely successful
‘when F is smooth, but it is crucial to recognize that there are nonsmooth
possibilities:

(a) A convex function like the absolute value |x| has a corner, where the second
derivative becomes a delta-function. The graph resembles the letter V. In 1
dimensions it turns into the length function F(x) = || x|, whose graph is the cone In
Fig. 8.11. The set E above the graph is pointed but still convex, and condition (12)
becomes the triangle inequality

llexy + (1 —o)x, | < Jlex || + (1 —c)x,].

(b) A convex function may be infinite at some points. Condition (12) keeps 1t
finite on the line between x, and x., if it is finite at those two points. Therefore the
set on which F is finite must be convex. One particular function is important:
F(x) = 0when xis in the convex set S, and F(x) = 4+ oo when xis notin S.It1s kIl_OWrl
as the “indicator function” I(x) of the set S, and it is extremely useful for constraints:
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F=Ix| F =0in S, «o outside F=max {a’x —b;
Wi i

Fig. 8.11. Convex sets E above the graphs of convex functions.

To minimize C(x) subject to x in S, we minimize C(x) 4 I(x) for all x. The points not
in S lead immediately to + oo, 80 effectively it is a minimum of C(x) over the set S.

The sum of convex functions is automatically convex. So is the maximum of two
or more convex functions, and the third graph in Fig. 8.11 is an example. With an
infinite number of planes, the graph of the maximum can be curved (but still
convex!). We could even reach the other two graphs in the figure, by choosing the
right planes. In fact every convex function is the maximum of a family of linear
functions—and to understand that we go back to convex sets.

The great property of a convex set E is that through every boundary point there
is at least one supporting hyperplane. This is a plane that touches the boundary of E,
keeping the rest of the set on one side. We assume the boundary is included in E; E
is a “closed” convex set. Where the boundary is smooth, the only supporting plane
is the one tangent to E. Where the boundary is pointed, at a corner, there are a lot
of supporting plancs through the boundary point. If we know all these planes, we
can reconstruct E.T It will be the intersection of all the halfspaces cut out by the
supporting planes.

Moving from convex sets to convex functions, these supporting planes become
tangent planes to the graph. Their slopes are the derivatives of the function. It is the
existence of these derivatives—the fact that there is at least one tangent plane at
every point of the graph (and more than one, at the vertex of the cone)-— that will
produce a saddle point. The planes are exactly what is needed for a general duality
theorem, bringing together all the specific cases proved earlier in this book.

Convexity and Duality

Suppose the cost C(x) and the constraints A{(x) are all convex functions.
If they are linear, we have linear programming. If C is quadratic, we have
quadratic programming. In general we have nonlinear programming, and we
are ready to show how it is transformed by Lagrange multipliers.

+ This is basic to duality: A convex sel can be described by saying which points the set
contains, or by saymg which half-spaces contain the set.
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The theory is based on one brilliant idea (I don’t know who it came to). That ideg
is to look beyond the particular values b = (By, ..., b,,) in the constraints of the
given problem, and to admit all vectors b. Our one problem is embedded in a whole
family of problems, and their minimum values produce a minimum function that
varies with b:

‘ M(b) = minimum value of C(x) subject to A(x) gﬂ (13)

To distinguish our particular b we denote it by b*; the specific problem is to find
M(b*). We denote by x* the minimizing point in that problem (if it exists). Thus
A(x*) < bf for each i =1, ..., m, and the minimum cost is M(b*) = C(x*).

Now enters the hypothesis that € and the A; are convex functions. It follows that
the minimum value M(b) is not only decreasing as b increases (because more
candidates x are admitted). It is also a convex function of b. The example with cost
C = x* and constraint x < b is sketched in Fig. 8.12—its minimum M (b) equals h2
for negative b and zero for positive b. The fact that M is convex when C and A are
convex is verified in the exerciscs. This convexity allows the general theory to make
its contribution: At any point like b*, the graph of M has a supporting tangent
plane. The plane has height M(b*) = C(x*) at the point b*, and at no point does the
plane go above the graph of M.

. ) .
Lmb} M(b) + y*(b —b¥)

Fig. 8.12. M(h) = minimum of x* with x < b.

If you tilt your head to make the plane horizontal, the whole curve has its
minimum at b* That is the point of Fig. 8.12b; we produce an unconstrained
minimum by adding a linear term that comes from the plane. If the slope of the plane
is —y*, the linear term to add is y*(h — b*). It equals zero at b*, but for larger b it
raises the curve and for smaller b it lowers it. Then the value C(x*) at b =b*
becomes an absolute minimum:

C(x*)=min min [C(x)+ y¥(b—b*)]. (14)

b A(x)<h

This y* is the right Lagrange multiplier for the original problem. It is nonnegativi,
as expected with inequality constraints. Its components satisfy y* = 0, because — ¥
is the slope of a decreasing function M(h). That slope is the sensitivity of the
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minimum with vespect to b:

oM
" at b= b*, (15)

* C
— PF = —
Yi b,

i

The Lagrange multiplier —which will be the solution to the dual problem, when
that appears—is the marginal cost: y* gives the change in the minimum as the
constraints are changed. The whole theory of sensitivity comes from the tangent
plane to M(h).

To go from sensitivity to duality, and to show that y* is the correct multiplier, the
technical step is to verily from (14) that.also

C(x*) =min [C(x) + y*(4(x) — b*)]. (16)

We do it quickly. For any x in (16), choose the same x in (14) and choose b = A(x).
Then the two expressions agree, and since (14) allows other choices we have
(16)=(14). On the other hand, for any b and x the requirement A(x) < b makes
(16) <(14), remembering y* = 0. Therefore the two arc equal.

At the point x* something special must happen. The term V¥E(A(x*) — b*) could
not be negative, or equation (16) would be ridiculous. Since y*¥=0and A(x*) < b*,
the only alternative is the complementarity condition:

&r cach i, either y¥ =0 or 4;(x*) = b*. l (17)

Then the inner product y*(A(x*) — b*) is zero, which is the Kuhn-Tucker condition.
We have reached the main result of Lagrange duality:

81 If the cost C(x) and the constraint functions A;(x) are strictly convex, then

min C(x) = max min [C(x) + y(A(x) — b¥)]. (18)

A(x) < b* y=0 X

The constrained minimization splits into an unconstrained minimization of L with
a parameter y, followed by a maximization (the dual problem) over y. The optimal
x* in the primal problem on the left and the optimal y* in the dual problem on the
right are related by the Kuhn-Tucker conditions {(7) and (8).

Proof /\t. Y = y* the two minima in (18) agree; that is (14) = (16). For other y >0
the right side could not be larger than the left. This is weak duality, which is always
easy:

iy =0land A(x) < b*  then C(x)> C(x0) + v(Alx) — b*).
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Therefore (18) is correct, the minimum equals the maximum, and duality holds,
Our simplest example will illustrate it best.

EXAMPLE  Minimize C = x2 subject to x < b
The unconstrained minimum of J, — x? 4 y(x — b) comes first:

L'=2x+y=0at x=—1y, so the minimum is [, — — 52 —by.
Then the maximum over ¥ =0 (the dual problem) is

b* at y=-=2b if b<0
x(—4y? —by)= ’ 7
max(=ay® —by) {0 at y=0, if b>0
This is the right side of (18); the minimum of Cis b* or zero.t

Conjugate Convex Functions

Behind this analysis of duality lics a beautiful piece of geometry. We have hinted
atit, twice at least, and the book will be incomplete until we say what it is, It brings
together the applications, and then we are finished.

The geometry starts with a convex function, for example F(x) = x*. The question
is: Which straight lines lie below this parabola? The graph of yx — d is a line with
slope y, and the line is below the parabola if yx — d < x? for all x. That is true if the
depth d is large enough:

d=yx —x? for all x. (19)
The right side is largest where its derivative is zero. At that point y — 2x =0, or

x =3y, and the requirement becomes d =3y* The line will just touch the para-
bola, as in Fig. 8.13, if d =12,

Fig. 8.13. Tangent line under F(x), at depth d = F*(y),

TI always doubted that duality could make a problem easier (here it doesn’t). But for a
continuous maximum flow problem with capacity |v] < 1 in the unit square, duality shows

that divp =2 + \//:E is possible. There is a prize of 10,000 yen for v.
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Now consider all these touching lines, with different slopes ). Their envelope is
the parabola! We get back to x2 by looking always for the highest line:

] r
max Lyx — ¥] = x%. (20)
v 4

The maximum is at y = 2x, and at that point (20) is 2x* — x* = x2.

This duality between convex functions and tangent lines extends far beyond
parabolas. The functions depend on x and the tangents depend on y. It is usual to
write F*(y) rather than d(y), to emphasize the parallel between F and F*. This
conjugate function F* looks so ordinary and innocent; it is the constant term d that
raises or lowers the line until it touches the parabola. However its construction is at
the center of convex analysis, and the steps that succeeded for a parabola in (19)
and (20) will succeed for every F: ,

8J Suppose F(x) is a convex function. For each slope y let
d = F*(y)=max [yx — F(x)]. o
This conjugate function F % is also convex. and for every x and y it :'éatfiéﬁésf :

Ff>yx—F, or F 2 yx— F* Then the maximum over the tangent lities e
brings back F: e

F(x) = max [yx — F*()] )

Since (22) repeats the operation in (21), the conjugate of F* is F** = F. In other
words, the dual of the dual is the primal.

The step from F to F* is the Legendre-Fenchel transform—named after the
mathematician who used it in physics and the onec who saw its possibilities as
mathematics. Legendre concentrated on smooth functions; Fenchel allowed
corners, and jumps to infinity. For smooth F the maximum occurs where the
derivative of yx — F(x) is zero: y = F'(x). For the parabola this was y = 2x and it
gave x =3y. Notice that we arc looking for x! The equation y = F'(x) has to be
solved— the function F’ has to be “inverted” to find x = (F')~ 1(y)—and this is the
subtle point in the calculation. Fortunately F' is an increasing function (since F was
convex). Then transforming from F* back to F = F** reverses this process. The
derivative in (22) is zero at x = (F*)(y); for the parabola this was x =1y We are
looking for y and we rediscover y = 2x. Let me try to put that relationship into
words:

There is a pairing between slopes y and points x. The tangent with slope ¥
touches the graph of F at the corresponding x. For each pair that means

E(x)+ F*(y)=xy, or F*=xF'(x)— F(x). (23)



Furthermore the derivatives G = F' and H = (F*) are inverse (o each other:
H(G(x)) = x and G(H(y)) = y.

In the example F was x?, F* was £, and the slope paired with x was ¥=2x. You
can check that (23) is correct. The last statement is casy, since G was multiplication
by 2 and H was multiplication by 1.

In Section 3.6 the transformation from F to F* took the Lagrangian to the
Hamiltonian, The pairing was between velocity » and momentum p=muv; the
kinetic cnergy was given equally by F =1mo? and F* =Lp?/m. Other pairs are
fundamental in science and engineering. In statics the pairing is between strain and
stress; I and F'* are strain energy and complementary energy. In thermodynamics
one pair is pressure and volume, and the Gibbs free cnergy and the Helmholtz free
energy. For electrical networks there is potential difference and current. In »n
dimensions the tangent lines become tangent planes, but the geometry holds on.

Applications: Minimum Norms

As we end this part of the book, devoted to optimization and duality,
it is amazing to see how many applications come from a single source. That
source was present at the beginning, in the first example of Chapter 2 —the
distance to a line. In n-dimensional space, it would become the distance
to a flat surface Ax=>h. And if different norms (measures of distance) are
allowed, including the familiar | x|? =x? + ... + x? along with others, then the
applications begin to appear. They all minimize tkat distance, subject to some form
Ax=b of Kirchhoff’s current law, which permits a brief review of the whole subject:

(1) Transportation problem: Minimize the shipment cost C,x, + - + C,x,
(2)  Resistive network: Minimize the heat dissipation x7 R, + --- + x2 R,
(3)  Maximal flow (stated differently): Minimize the maximum of |x,|/c,. ..., [X,l/¢,.

If the costs and resistances and capacities are all 1, the distances are

172,

Xl = 1eaf 4 e bl ] = Gef 4o+ X3 = max|x,.

X

| oo

The first and third are the “{' norm™ and “I" norm” of x. They are associated with
linear programming. If one of them appears in the primal, the other will appear in
the dual. In between these two, and dual to itself, is the ordinary Fuclidean length
|x 5. This is the “/> norm™ of x. It is squared in the electrical problem and in all of
Chapter 2, and it leads to quadratic programming. _
I realize now that all these problems lead back to the first example of duality in
this book: The minimum distance to a line equals the maximum distance to plamfs
through that line. Tt is truc that the line has become a higher-dimensional surface; it
is the graph of Ax=bh. Originally T was thinking of an ordinary line, with 2
equations in 3-dimensional space, but one virtue of algebra is its freedom from
that limitation. The dual problems are associated with Federal Express, anfi
Sprint, and a minimum cut. Perhaps even the marriage problem fits into this
framework; it must. So the whole of duality theory in these applications has
come to depend on one final calculation, the distance from a point to & plane.



