Machine Learning. Fall 2013. Homework 3.

Due: Thursday 30/May. 2013.

Question 1. Principal Component Analysis.

Suppose the data elements $\{\vec{x}_i\}$ where each \vec{x}_i is an M-dimensional vector. The vectors are of form $\vec{x} = a\delta_k = (0, ..., 0, a, 0, ...)$, where the a is in the k^{th} slot, and k, a are random variables. k is uniformly distributed over 1, ..., N and P(a) is arbitrary. Calculate the covariance matrix of the data $\{\vec{x}_i\}$. Show that it has one eigenvector of form (1, ..., 1) and that the other eigenvectors all have the same eigenvalue. Discuss whether PCA is a good way to select features for this problem. Hint: The covariance matrix C of the signals \vec{x} is of form $C_{i,j} = \lambda + \mu \delta_{i,j}$ for some λ, μ .

Question 2. Fisher's linear discriminant.

Describes Fisher's linear discriminant. How is it used to discriminate between data from two classes.

Suppose each datapoint \vec{x} in the first class is of form $\vec{x} = (x_1, ..., x_{2M})$ where the x_i are i.i.d. from a Gaussian with zero mean and standard deviation σ . The datapoints in the second class are of form $\vec{x} = (x_1, ..., x_M, \rho + x_{M+1}, ..., \rho + x_{2M})$ where ρ is fixed and the x_i are also generated by a Gaussian with zero mean and standard deviation σ .

What is Fisher's linear discriminant between these two datasets? Does the discriminant change if ρ is a random variable with distribution $P(\rho)$?

Question 3. ISOMAP algorithm.

Describe the ISOMAP algorithm. What are its advantages and disadvantages compared to PCA?

Question 4. Expectation-Maximization.

Do questions 3 and 4 from Chp 7 of Alypaydin's book.

Question 5. Decision Trees.

Describe the Decision Tree algorithm. Consider the task of deciding whether a customer is low-risk y=1 or high-risk y=-1 depending on income x_1 and savings x_2 . Suppose the set of questions are tests of form $is \ x_1 > T_1$ and $is \ x_2 > T_2$, where T_1 and T_2 are thresholds. The training set has low-risk y=1 points at x_1, x_2) positions: (2,3), (3.5,4), (2.5,6), (6,3.5), (7,8) and high-risk y=-1 points at (7,1.5), (1,8), (1.5,1.5), (2,2), (3,3). Derive the best decision tree for this case, specifying the impurities at the nodes.