LECTURE NOTE #4

PROF. ALAN YUILLE

1. <u>Learning Probability Distributions (Parametric</u> Methods)

$$p(x \mid y) \& p(y)$$

For simplicity, we will discuss learning a distribution p(x).

Ideal Method

Assume a parameterized model for the distribution of form $p(x \mid \theta)$, θ : model parameter

E.G.

Gaussian distribution

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
, $\theta = (\mu, \sigma)$

Assume

that data is independent identically distributed (iid).

$$p(x_1, ..., x_N \mid \theta) = \prod_{i=1}^N p(x_i \mid \theta)$$
 (product for independence).

Choose:

 $\hat{\theta} = \arg_{\theta} \max p(x_1, \dots, x_N \mid \theta) = \arg_{\theta} \min\{-\log p(x_1, \dots, x_N \mid \theta)\} \text{ (use } \log\{a \times b\} = \log a + \log b\text{)}.$

Hence $p(x_1, \ldots, x_N \mid \hat{\theta}) \ge p(x_1, \ldots, x_N \mid \theta)$, for all θ

2.

Example: Gaussian

$$-\log p(x_1, ..., x_N \mid \mu, \sigma) = -\sum_{i=1}^{N} \log p(x_i \mid \mu, \sigma)$$
$$= \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} + \sum_{i=1}^{N} \log \sqrt{2\pi}\sigma$$

Differentiate w,r,l. μ, σ gives

$$\frac{\delta}{\delta\mu}\log p(x_1,\ldots,x_N\mid\mu,\sigma)=\frac{1}{\sigma^2}\sum_{i=1}^N(x_i-\mu).$$

$$\frac{\delta}{\delta\sigma}\log p(x_1,\ldots,x_N\mid\mu,\sigma) = \frac{1}{\sigma^3}\sum_{i=1}^N (x_i-\mu)^2.$$

Maxima

occurs at

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\hat{\sigma_2} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

Easy to check these are maxima by computing the second order derivatives (Hessian) and showing it is positive definite. Hence the (negative) log likelihood is a convex function and has at most one minimum.

$$\frac{\delta^2}{\delta\mu^2}, \frac{\delta^2}{\delta\mu\delta\sigma}, \frac{\delta^2}{\delta\sigma^2}$$

Note:

Similar results hold for Gaussian distribution in higher dimensions.

Note:

The Gaussian is a special case. It is often impossible to some $\frac{\delta}{\delta\theta}\log p(x_i,\ldots,x_N\mid\theta)=0$ analytically. An algorithm is required (see later).

3.

An alternative viewpoint on ML learning of distributions. This gives deeper understand-

Suppose the data is generated by a distribution f(x).

Define the Kullback-Leiber divergence between f(x) and the model $p(x|\theta)$

 $D(f||p) = \sum_{x} f(x) \log \frac{f(x)}{p(x|\theta)}$ Kullback-Leiber:

KL has the property that

 $D(f||p) \ge 0$ $\forall f, p$

if, and only if, $f(x) = p(x|\theta)$ D(f||p) = 0,

So, D(f||p) is a measure of the similarity between f(x) and $p(x|\theta)$

We can write, $D(f||p) = \sum_x f(x) \log f(x) - \sum_x f(x) \log p(x|\theta)$ * $\sum_x f(x) \log f(x)$: Independent of θ * $\sum_x f(x) \log p(x|\theta)$: Depends on θ

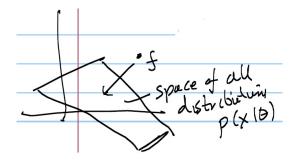


FIGURE 1. space of all distribution $p(x|\theta)$ in section 3.

4.

Now suppose we have sample (i.i.d.) $x_1,...,x_n$ from f(x)

This gives us on empirical distribution $f_{emp}(x) = \frac{1}{N} \sum_{i=1}^{N} \delta_{x,x_i}$

* $\delta_{x,x_i} \colon$ Kronecker delta – an Indicator function

The KL divergence between $f_{emp}(x)$ and $p(x|\theta)$ can be written as:

$$J(\theta) = -\sum_{x} f_{emp}(x) \log p(x|\theta) + K \qquad * K \text{ is independent of } \theta$$

$$J(\theta) = -\frac{1}{N} \sum_{i=1}^{N} \log p(x_i|\theta) + K$$

<u>Minimizing</u> $J(\theta)$ w.r.t. θ , finds the distribution $p(x|\hat{\theta})$ which is closest to $f_{emp}(x)$.

 $\frac{\text{But minimizing }J(\theta)\text{ w.r.t. }\theta\text{ is exactly ML.}}{\hat{\theta}=\arg\min_{\theta}\{-\sum_{i=1}^{N}\log p(x_{i}|\theta)\}}$

So, ML has meaning even if best fit to the model. Even if the model is only an approximation.

5. Exponential Distributions

$$\begin{split} p(\underline{\mathbf{x}}|\underline{\lambda}) &= \frac{1}{Z[\underline{\lambda}]} \exp^{\underline{\lambda} \cdot \underline{\phi}(\underline{\mathbf{x}})} \\ * z[\underline{\lambda}] \colon \text{normalization factor} \\ * \underline{\lambda} \colon \text{parameters} \qquad \lambda &= (\lambda_1, \lambda_2, ..., \lambda_M) \\ * \underline{\phi}(\underline{\mathbf{x}}) \colon \text{statistics} \qquad \underline{\phi}(\underline{\mathbf{x}}) &= (\phi_1(\underline{\mathbf{x}}), \phi_2(\underline{\mathbf{x}}), ..., \phi_M(\underline{\mathbf{x}})) \end{split}$$

Almost every named distribution can be expressed as an exponential distribution.

For Gaussian in 1-dimension
$$\underline{\text{write }} \underline{\phi}(x) = (x, x^2) \qquad \underline{\lambda} = (\lambda_1 \lambda_2)$$

$$p(x|\lambda) = \frac{1}{z[\underline{\lambda}]} \exp^{\lambda_1 x + \lambda_2 x^2} \qquad \text{compare to } \frac{1}{\sqrt{2\pi}\sigma} \exp^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Translation

$$\begin{cases} \lambda_2 = -\frac{1}{2\sigma^2} \\ \lambda_1 = \frac{\mu}{\sigma^2} \end{cases}$$
$$Z[\underline{\lambda}] = \sqrt{2\pi}\sigma \exp \frac{\mu^2}{2\sigma^2}$$

Similar translations into exponential distribution can be made for Poisson, Beta, Dirichlet \sim most (all) distribution you have been taught.

PROF. ALAN YUILLE

6. Learning an Exponential Distribution)

You can learn them by Maximum Likelihood, which again can be interpreted in terms of minimizing the KL-divergence between the empirical distribution of the data, and the model distribution.

Example:

$$\begin{array}{ll} (\underline{x}_1,\underline{x}_2,\ldots,\underline{x}_{\mu},\ldots,\underline{x}_N,) \\ \\ p(\underline{x}_1,\underline{x}_2,\ldots,\underline{x}_N\mid\underline{\lambda}) = & \prod_{\mu=1}^N e^{\frac{\underline{\lambda}\cdot\underline{\phi}(\underline{x}_{\mu})}{\overline{Z}[\underline{\lambda}]}} \end{array}$$

 $\underline{\text{Maximize}} \;\; \text{w.r.t} \; \underline{\lambda} : \parallel$

This has a very nice form, which occurs because the exponential distribution depends on the data \underline{x} only in terms of the function $\underline{\phi}$ - the <u>sufficient statistics</u>

Note:

$$Z[\underline{\lambda}] = \sum_{\underline{x}} e^{\underline{\lambda} \cdot \underline{\phi}(\underline{x})}$$

$$\frac{\delta}{\delta\underline{\lambda}}\log Z[\underline{\lambda}] = \sum_{\underline{x}} \frac{\underline{\phi}(\underline{x})e^{\underline{\lambda}\cdot\underline{\phi}(\underline{x})}}{Z[\underline{\lambda}]}$$

$$\frac{\delta}{\delta \underline{\lambda}} \log Z[\underline{\lambda}] = \sum_{\underline{x}} \underline{\phi}(\underline{x}) p(\underline{x} \mid \underline{\lambda})$$

7.

ML

minimizes:

LECTURE NOTE #4

7

$$\begin{split} &-\sum_{\mu=1}^{N}\underline{\lambda}\cdot\underline{\phi}(\underline{x}_{\mu})+N\log Z[\underline{\lambda}]\\ &\frac{\delta}{\delta\underline{\lambda}}\longrightarrow -\sum_{\mu=1}^{N}\underline{\lambda}\cdot\underline{\phi}(\underline{x}_{\mu})+N\sum_{\underline{x}}\underline{\phi}(\underline{x})p(\underline{x}\mid\underline{\lambda})\\ &\sum_{\underline{x}}\underline{\phi}(\underline{x})p(\underline{x}\mid\underline{\lambda})=\frac{1}{N}\sum_{\mu=1}^{N}\underline{\phi}(x_{\mu}) \end{split}$$

Pick the parameters $\underline{\lambda}$ so that the expected statistics $\underline{\phi}(\underline{x})$ with respect to the distribution $p(\underline{x} \mid \underline{\lambda})$ is equal to the average of the statistics of the samples.

This requires us to solve:

$$\textstyle \sum_{\underline{x}} \underline{\phi}(\underline{x}) p(\underline{x} \mid \underline{\lambda}) = \underline{\psi} \text{ with } \underline{\psi} = \frac{1}{N} \sum_{\mu}^{N} \underline{\phi}(\underline{x}_{\mu}).$$

This is equivalent to minimizing.

$$\log Z[\underline{\lambda}] - \underline{\lambda} \cdot \psi$$

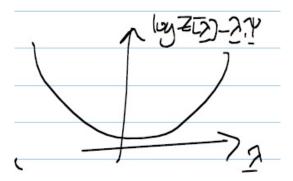


Figure 2. $\log z[\underline{\lambda}] - \underline{\lambda} \cdot \underline{\psi}$ in section 7.

It can be shown that this function is convex and has a unique solution:

(Because $\frac{\delta^2}{\delta\underline{\lambda}\delta\underline{\psi}}\{\log Z[\underline{\lambda}] - \underline{\lambda}\cdot\underline{\psi}\}$ is positive definite.

8.

ML estimation for exponential distributions is a convex optimization function - this means that there are algorithms which are guaranteed to converge to the correct solution.

Example:

Generalized Iterative Scaling (GIS) Initialize $\lambda^{t=0}$ to any value. Then iterate:

$$\begin{cases} \underline{\lambda}^{t+1} = \underline{\lambda}^t - \log \underline{\psi}^t + \log \underline{\psi} \\ \text{where} \quad \underline{\psi}^t = \sum_{\underline{x}} \underline{\phi}(\underline{x}) p(\underline{x} \mid \underline{\lambda}^t) \\ \text{Notation} : \log \underline{\psi} \text{ is a vector with components} \quad \log \psi_1, \log \psi_1, \dots, \log \psi_N \end{cases}$$

This algorithm is guaranteed to converge to the correct solution for any starting point $\lambda^{t=0}$ (because $\log Z[\vec{\lambda}] - \vec{\lambda} \cdot \vec{\psi}$ is convex). If it reaches a value $\vec{\lambda}$ such that $\log \underline{\psi}^t = \log \underline{\psi} - \mathrm{i.e.}$ the expected statistics of the model equals the statistics of the data – then the algorithm stops – $\vec{\lambda}^{t+1} = \vec{\lambda}^t$.

But

the algorithm requires computing the quantity

$$\sum_{x} \underline{\phi}(\underline{x}) p(\underline{x} \mid \underline{\lambda}^{t})$$

for each iteration step, which is often difficult (see examples in the next lecture).

Note: Markov Chain Monte Carlo (MCMC) algorithms can be used to approximate this term.

9. The Maximum Entropy Principle

How to get to distributions from statistics.

<u>Suppose</u> we measure some statistics $\underline{\phi}(\underline{x})$, what distribution does it correspond to? Impossible question. There are too many possible distributions.

Maximum Entropy Principle:

Select the distribution which has the maximum entropy and is consistent with the observed statistics

Entropy of a distribution
$$p(\underline{x})$$

 $H[p] = -\sum_{x} p(\underline{x}) \log p(\underline{x})$

A measure of the amount of information obtain by observing a sample \underline{x} from a distribution p(x).

Shannon - Information Theory. Encode a signal x by a code of length $-\log p(x)$ - so that frequent signals (p(x) big) have short codes and infrequent signals (p(x) small) have long codes. Then the expected code length is $-\sum_x p(x) \log p(x)$. Alternatively, the entropy is the amount of information we expect to get from a signal x before we observe it but we know that the signal has been sampled from a distribution p(x).

Entropy is a concept discovered by physicists. It can be shown that the entropy of a physical system always increases (with plausible assumptions). This is called the Second Law of Thermodynamics. It explains why a cup can break into many pieces (if you drop it), but a cup can never be created by its pieces suddenly joining together. Thermodynamics was discovered in the early 19^{th} century, and shows that it is impossible to design an engine that can create energy.

10.

Example: Suppose \underline{x} can take N values: $\underline{\alpha}_1, \underline{\alpha}_2, ..., \underline{\alpha}_N$

$$\underbrace{\text{Suppose:}}_{p(\underline{x} = \underline{\alpha}_1) = 1}$$

$$p(\underline{x} = \underline{\alpha}_j) = 0, \qquad j = 2, ..., N$$

Then the entropy of this distribution is zero, because we know that \underline{x} has to take value α , before we observe it. The entropy is $-0\log 0 + (N-1)\{1\log 1\}$, and $0\log 0 = 0$ and $1\log 1 = 0$ (take the limit of $x\log x$ as $x\mapsto 0$ and $x\mapsto 1$.)

Now suppose:
$$p(\underline{x} = \underline{\alpha}_j) = \frac{1}{N}, \qquad j = 1, ..., N$$
 Then $H(p) = -N \times \frac{1}{N} \log(\frac{1}{N}) = \log N$

This is the maximum entropy distribution. Note that the maximum entropy distribution is uniform – all states x are equally likely.

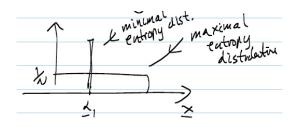


Figure 3. maximum entropy distribution in section 10.

11. MAXIMUM ENTROPY PRINCIPLE

Given statistics $\phi(\underline{x})$ with observed value $\underline{\psi}$, choose the distribution $p(\underline{x})$ to maximize the entropy subject to constraints (Jaynes).

$$-\sum_{\underline{x}} p(\underline{x}) \log p(\underline{x}) + \mu \{\sum_{\underline{x}} p(\underline{x}) - 1\} + \underline{\lambda} \cdot \{\sum_{\underline{x}} p(\underline{x}) \phi(\underline{x}) - \underline{\psi}\}$$

 μ, λ : lagrange multipliers

 $p(\underline{x})$: constraints

$$\frac{\delta}{\delta p(\underline{x})} - \log p(\underline{x}) - 1 + \mu + \underline{\lambda} \cdot \underline{\phi}(\underline{x}) = 0$$

Solution,
$$p(\underline{x}|\underline{\lambda}) = \frac{\exp^{\underline{\lambda} \cdot \underline{\phi}(\underline{x})}}{Z[\underline{\lambda}]}$$

where $\underline{\lambda}, Z[\underline{\lambda}]$ are chosen to satisfy the constraints:

$$\begin{array}{c} \sum_{\underline{x}} p(\underline{x}) = 1, \Rightarrow Z[\underline{\lambda}] = \sum_{\underline{x}} \exp^{\underline{\lambda} \cdot \underline{\phi}(\underline{x})} \\ \sum_{\underline{x}} p(\underline{x}) \phi(\underline{x}) = \underline{\psi}, \Rightarrow \underline{\lambda} \text{ is chosen s.t. } \sum_{\underline{x}} p(\underline{x} | \underline{\lambda}) \phi(\underline{x}) = \underline{\psi} \end{array}$$

The maximum entropy principle recovers exponential distribution!

12. Training and Testing

Critical issue is - how much data do you need to learn a distribution?

There is no perfect answer. A rule of thumb is that you need $k \times$ no. of parameter of the distribution, where k = 5to10.

In practice, train (learn) the model on a training dataset. Test it on a second dataset. \forall performance (e.g. Bayes Risk, ROC curves, etc) is the some on both - then <u>you have learned</u> or generalized

 \forall performance is good on the training set but bad on the training set - then you have only <u>memorized</u> the training set.