Discrete Markov Processes

- This is a Markov Model probability distribution for a sequence.
- Two cases: (I) observable Markov Models, (II) hidden Markov Models.
- Both are exponential distributions. There are no closed loops so Dynamic Programming can be used for inference.
- Hidden Markov Models were state-of-the-art for Speech Recognition.

Discrete Markov Processes

N-distinct state s_1, \ldots, s_N

State at time t: q_t

$q_t = s_i$: system in state s_i

$P(q_{t+1} = s_j \mid q_t = s_i, q_{t-1} = s_k, \ldots)$
First-order Markov Model

\[P(q_{t+1} = s_j \mid q_t = s_i, q_{t-1} = s_k, \ldots) = P(q_{t+1} = s_j \mid q_t = s_i) \]

The future is independent of the past, except for the proceeding time state

Transition probability \(a_{ij} = P(q_{t+1} = s_j \mid q_t = s_i) \)

\[a_{ij} \geq 0, \sum_{j=1}^{N} a_{ij} = 1 \text{ for all } i \]

Transition probability is independent of time
Observable Markov Model

Initial probability \(\pi_i \equiv P(q_i = s_i) \)

In an observable Markov model, we can directly observe the states \(\{q_t\} \)

This enables us to learn the transition probabilities

Observation sequence \(O = Q = \{q_1, \ldots, q_T\} \)

\[
P(O = Q \mid A, \pi) = P(q_1) \prod_{t=2}^{T} P(q_t \mid q_{t-1}) = \pi_{q_1} a_{q_1 q_2} \cdots a_{q_{T-1} q_T}
\]
Observable Markov Model

Example Urns with 3 types of ball

\(s_1 = \text{red}, \ s_2 = \text{blue}, \ s_3 = \text{green} \) \(\text{(state: the urn we draw the ball from)} \)

Initial probability: \(\pi = [0.5, 0.2, 0.3] \)

Transition \(a_{ij} \)
\[
A = \begin{bmatrix}
0.4 & 0.3 & 0.3 \\
0.2 & 0.6 & 0.2 \\
0.1 & 0.1 & 0.8
\end{bmatrix}
\]

Sequence \(O = \{s_1, s_1, s_3, s_3\} \)

\[
P(O \mid A, \pi) = P(s_1)P(s_1 \mid s_1)P(s_3 \mid s_1)P(s_3 \mid s_3)
= \pi_1 \cdot a_{11} \cdot a_{13} \cdot a_{33} = 0.5 \times 0.4 \times 0.3 \times 0.8 = 0.048
\]
Learning Parameters for MM

Suppose we have K sequence of length $T \Rightarrow q_t$: state at time t of k^{th} sequence

$$
\hat{\pi}_i = \frac{\text{[sequence starting with } s_i]}{\text{[sequence]}} = \frac{\sum_k I(q_k^1 = s_i)}{K} \\
\hat{\alpha}_{ij} = \frac{\text{[transitions from } s_i \text{ to } s_j]}{\text{[transition from } s_i]} = \frac{\sum_k \sum_{t=1}^{T-1} I(q^k_t = s_i \text{ and } q^k_{t+1} = s_j)}{\sum_k \sum_{t=1}^{T-1} I(q^k_t = s_i)}
$$

E.G. $\hat{\alpha}_{ij}$ is no. of times a blue ball is followed a red ball divided by the total no. of red balls

NOTE The counts # are sufficient statistics for the MM (see previous lecture).

ML estimate of the parameters equates empirical statistics with model statistics ML

$$
\hat{A}, \hat{\pi} = \arg\max \prod_{k=1}^K P(O = Q_k \mid A, \pi)
$$
Hidden Markov Models (HMMs)

States are not directly observable, but we have an observation from each state. Let

\[q_t \in \{s_1, \ldots, s_N\} \]

and

\[O_t \in \{v_1, \ldots, v_M\} \]

be the observable. The observation probability is given by

\[b_j(m) = P(O_t = v_m \mid q_t = s_j) \]

Two sources of stochasticity:

- The observation \(b_j(m) \) is stochastic
- The transition \(a_{ij} \) is stochastic

Back to the urn analogy: Let the urn contain balls with different colors. For example, Urn 1: mostly red, Urn 2: mostly blue, Urn 3: mostly green. The observation is the ball color, but we don’t know which urn it comes from (the state).
Hidden Markov Models

Elements:

1. **N:** Number of states $S = \{s_1, \ldots, s_N\}$
2. **M:** Number of observation symbols in alphabet $V = \{v_1, \ldots, v_M\}$
3. State transition probability $A = \{a_{ij}\}$, $a_{ij} = P(q_{t+1} = s_j | q_t = s_i)$
4. Observation probabilities $B = \{b_j(m)\}$, $b_j(m) = P(O_t = v_m | q_t = s_j)$
5. Initial state probabilities $\pi = \{\pi_i\}$, $\pi_i = P(q_1 = s_j)$

$\lambda = (A, B, \pi)$ Specify the parameter set of an HMM

Three Basic Problems

1. Given a model λ, evaluate the $P(O|\lambda)$ of any sequence $O = (O_1, O_2, \ldots, O_T)$
2. Given a model and observation sequence O, find state sequence $Q = \{q_1, q_2, \ldots, q_T\}$, which has highest probability of generating O: $Q^* = \text{arg max}_Q P(Q|O, \lambda)$
3. Given training et of sequence $X = \{O^k\}$, find $\lambda^* = \text{arg max} P(X|\lambda)$
HMMs – Problem 1. Evaluation

Given an observation $O \!\! = \!\! (O_1, O_2, \ldots, O_T)$ and a state sequence Q, the probability of observing O given Q is

$$P(O \mid Q, \lambda) = \prod_{t=1}^{T} P(O_t \mid q_t, \lambda) = b_{q_1}(O_1)b_{q_2}(O_2)\cdots b_{q_T}(O_T)$$

But we don’t know Q

The prior probability of state sequence is

$$P(O \mid \lambda) = P(q_1)\prod_{t=2}^{T} P(q_t \mid q_{t-1}) = \pi_{q_1} a_{q_1q_2} \cdots a_{q_{T-1}q_T}$$

Joint probability

$$P(O, Q \mid \lambda) = P(q_1)\prod_{t=2}^{T} P(q_t \mid q_{t-1})\prod_{t=1}^{T} P(O_t \mid q_t)$$

$$= \pi_{q_1} b_{q_1}(O_1)a_{q_1q_2} b_{q_2}(O_2)\cdots a_{q_{T-1}q_T} b_{q_T}(O_T)$$

We can compute

$$P(O \mid \lambda) = \sum_{Q} P(O, Q \mid \lambda)$$

But this summation is impractical directly, because there are too many possible Q ($|Q| = N^T$)
HMMs – Problem 1. Evaluation

But there is an efficient procedure to calculate \(P(O | \lambda) \) called the forward-backward procedure (essentially – dynamic programming).

This exploits the Markov structure of the distribution.

\[
\alpha_t(i) = P(O_1, \ldots, O_t, q_t = s_i | \lambda)
\]

Forward variable \(\alpha_t(i) \) is probability of observing the partial sequence and being in state \(S_i \) at time \(t \), (given the model \(\lambda \)).

This can be computed recursively:

Initialization:
\[
\alpha_1(i) = P(O_1, q_1 = s_i | \lambda)
\]
\[
= P(O_1 | q_1 = s_i, \lambda)P(q_1 = s_i | \lambda)
\]
\[
= \prod_i b_i(O_1)
\]

Recursive:
\[
\alpha_{t+1}(i) = \left\{ \sum_{i=1}^{N} \alpha_t(i) a_{ij} \right\} b_j(O_{t+1})
\]
HMMs – Problem 1. Evaluation

Intuition: $\alpha_t(i)$ explains first t observations and ends in state s_i

\times probability a_{ij} to get to state s_j at $t+1$

\times probability of generating $(t+1)$th observation $b_j(O_{t+1})$

Then sum over all possible states s_i at time t

$$P(O \mid \lambda) = \sum_{i=1}^{N} P(O, q_T = s_i \mid \lambda) = \sum_{i=1}^{N} \alpha_T(i)$$

Computing $\alpha_t(i)$ is $O(N^2T)$

This solves the first problem – computing the probability of generating the data given the model

An alternative algorithm (which we need later) is backward variable $\beta_t(i) \equiv P(O_{t+1}, \ldots, O_T \mid q_t = s_i, \lambda)$

Finalize recursion:

$$\beta_T(i) = 1$$

$$\beta_i(i) = \sum_{j=1}^{N} a_{ij} b_j(O_{i+1}) \beta_{i+1}(j)$$
HMMs – Problem 2. Finding the state sequence

Again, exploit the linear structure

Greedy Define $\delta_t(i)$ in probability of state s_i at time t given O and λ

$$\delta_t(i) = P(q_t = s_i | O, \lambda) = \frac{P(O | q_t = s_i, \lambda)P(q_t = s_i | \lambda)}{P(O | \lambda)} = \frac{\alpha_t(i)\beta_t(i)}{\sum_{j=1}^{N}a_t(j)\beta_t(j)}$$

Forward variable $\alpha_t(i)$ explains the starting part of the sequence until time t ending in s_i, backward variable $\beta_t(i)$ explains the remaining part of the sequence up to time T

We can try to estimate the state by choosing $q_t^* = \arg\max_i \delta_t(i)$ for each t

But, this ignores the relations between neighboring states.

It may be inconsistent $q_t^* = s_i$, $q_{t+1}^* = s_j$ but $a_{ij} = 0$
Vision as Bayesian Inference

HMMs – Viterbi Algorithm (Dynamic Programming)

Define $\delta_t(i)$ is the probability of the highest probability path that accounts for all the first t observations and ends in s_i

$$\delta_t(i) = \max_{q_1, \ldots, q_t} P(q_1, q_2, \ldots, q_{t-1}, q_t = s_i, O_1, \ldots, O_t \mid \lambda)$$

Calculate recursively

1. Initialize $s_1(i) = \pi_i b_i(O_1), \psi_1(i) = 0$

2. Recursion $\delta_t(j) = \max_i \delta_{t-1}(i) a_{ij} b_j(O_t)$

$$\psi_t(j) = \arg \max_i \delta_{t-1}(i) a_{ij}$$

3. Termination $p^* = \max_i s_T(i)$

$$q_T^* = \arg \max_i s_T(i)$$

4. Path (state sequence) backtracking: $q_T^* = \psi_{t+1}(q_{t+1}^*), t = T - 1, T - 2, \ldots, 1$

Intuition

$\psi_t(j)$ keeps track of the state that maximizes $\delta_t(j)$ at time $t-1$

Same complexity $O(N^2T)$
HMMs – Baum-Welch algorithm (EM)

At each iteration,

E-step Compute $\zeta_t(i, j) \text{ & } \gamma_t(i)$ given current $\lambda=(A,B,\pi)$

M-step Recalculate λ given $\zeta_t(i, j) \text{ & } \gamma_t(i)$

Alternate the two steps until convergence

Indicator variables $Z_i^t = \begin{cases} 1, & \text{if } q_t = s_i \\ 0, & \text{otherwise} \end{cases}$ and $Z_{ij}^t = \begin{cases} 1, & \text{if } q_t = s_i \text{ & } q_{t+1} = s_j \\ 0, & \text{otherwise} \end{cases}$

(Note, these are 0/1 in case of observable Markov model)

Estimate them in the E-step as $E[Z_i^t] = \gamma_t(i)$

$E[Z_{ij}^t] = \zeta_t(i, j)$

In M-step, count the expected number of transitions from s_i to s_j ($\sum_t \zeta_t(i, j)$)

and total number of transitions from s_i ($\sum_t \gamma_t(i)$)
HMMs – Baum-Welch algorithm (EM)

This gives transition probability from s_i to s_j

$$
\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \zeta_t(i, j)}{\sum_{t=1}^{T-1} \gamma_t(i)}
\hat{b}_j = \frac{\sum_{t=1}^{T} \gamma_t(j)I(O_t = v_m)}{\sum_{t=1}^{T} \gamma_t(j)}
$$

For multiple observation sequences:

$$
X = \{O^k : k = 1, \ldots, K\}
$$

$$
P(X | \lambda) = \prod_{k=1}^{K} P(O^k | \lambda)
$$

$$
\hat{a}_{ij} = \frac{\sum_{k=1}^{K} \sum_{t=1}^{T_k-1} \zeta_t^k(i, j)}{\sum_{k=1}^{K} \sum_{t=1}^{T_k-1} \gamma_t^k(i)}
\hat{b}_j^k(m) = \frac{\sum_{k=1}^{K} \sum_{t=1}^{T_k-1} \gamma_t^k(j)I(O_t^k = v_m)}{\sum_{k=1}^{K} \sum_{t=1}^{T_k-1} \gamma_t^k(j)}
\hat{\pi}_i = \frac{\sum_{k=1}^{K} \gamma_1^k(i)}{K}
$$

Soft counts instead of real counts
HMMs -- Recapulation

We have given algorithm to solve the three problems:

1. Compute $P(O|\lambda)$
2. Compute $Q^* = \arg \max P(Q | O, \lambda)$
3. Compute $\lambda^* = \arg \max P(X | \lambda)$

$P(O|\lambda)$ is used for model selection

Suppose we have two alternative models for the data $P(O|\lambda_1), P(O|\lambda_2)$

Select model 1, if $P(O | \lambda_1) > P(O | \lambda_2)$
model 2, otherwise

I.E. detect which model generates the sequences

This for multiple models with training data for each

$\lambda^*_1, \ldots, \lambda^*_w = \arg \max_{\lambda} P(X^1 | \lambda)P(X^2 | \lambda)\ldots P(X^w | \lambda)$

Use this to build speech recognition system
Vision as Bayesian Inference

- HMMs have been applied to computer vision for problems involving time sequences.
- Examples: (i) modeling tennis strokes, (ii) modeling sequences of actions in a baseball game.
- MMs relate to LSTM neural network models. Now popular as large language models.
- HMMs and MMs are exponential distributions with sufficient statistics – count frequencies – and can be derived from exponential models with and without hidden variables.
- The are probabilities on graphs without closed loops. So dynamic programming can be used for inference and learning.