Discrete Markov Processes

- This is a Markov Model probability distribution for a sequence.
- Two cases: (I) observable Markov Models, (II) hidden Markov Models
- Both are exponential distributions. There are no closed loops so Dynamic Programming can be used for inference.
- Hidden Markov Models were state-of-the-art for Speech Recognition.

Discrete Markov Processes

N-distinct state s_{1}, \ldots, s_{N}
State at time $t: q_{t}$

$$
q_{t}=s_{i}: \text { system in state } s_{i}
$$

$$
P\left(q_{t+1}=s_{j} \mid q_{t}=s_{i}, q_{t-1}=s_{k}, \ldots\right)
$$

First-order Markov Model

$$
P\left(q_{t+1}=s_{j} \mid q_{t}=s_{i}, q_{t-1}=s_{k}, \ldots\right)=P\left(q_{t+1}=s_{j} \mid q_{t}=s_{i}\right)
$$

The future is independent of the past, except for the proceeding time state

Transition probability $a_{i j}=P\left(q_{t+1}=s_{j} \mid q_{t}=s_{i}\right)$

$$
a_{i j} \geq 0, \sum_{j=1}^{N} a_{i j}=1 \text { for all } i
$$

Transition probability is independent of time

Observable Markov Model

Initial probability $\pi_{i} \equiv P\left(q_{i}=s_{i}\right)$

In an observable Markov model, we can directly observe the states $\left\{q_{t}\right\}$

This enables us to learn the transition probabilities

Observation sequence $O=Q=\left\{q_{1}, \ldots, q_{T}\right\}$

$$
P(O=Q \mid A, \pi)=P\left(q_{1}\right) \prod_{t=2}^{T} P\left(q_{t} \mid q_{t-1}\right)=\pi_{q_{1}} a_{q_{1} q_{2}} \cdots a_{q_{T-1} q_{T}}
$$

Observable Markov Model

Example Urns with 3 types of ball

$\mathrm{s}_{1}=$ red, $\mathrm{s}_{2}=$ blue, $\mathrm{s}_{3}=$ green (state: the urn we draw the ball from)
Initial probability: $\pi=[0.5,0.2,0.3]$
Transition $a_{i j}$

$$
A=\left[\begin{array}{lll}
0.4 & 0.3 & 0.3 \\
0.2 & 0.6 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right]
$$

Sequence $O=\left\{s_{1}, s_{1}, s_{3}, s_{3}\right\}$

$$
\begin{aligned}
P(O \mid A, \pi) & =P\left(s_{1}\right) P\left(s_{1} \mid s_{1}\right) P\left(s_{3} \mid s_{1}\right) P\left(s_{3} \mid s_{3}\right) \\
& =\pi_{1} \cdot a_{11} \cdot a_{13} \cdot a_{33}=0.5 \times 0.4 \times 0.3 \times 0.8=0.048
\end{aligned}
$$

Learning Parameters for MM

Suppose we have K sequence of length $T \Rightarrow q_{t}$: state at time t of $k^{\text {th }}$ sequence

$$
\begin{aligned}
& \hat{\pi}_{i}=\frac{\#\left[\text { sequence starting with } s_{i}\right]}{\#[\text { sequence }]}=\frac{\sum_{k} I\left(q_{1}^{k}=s_{i}\right)}{K} \\
& \hat{a}_{i j}=\frac{\#\left[\text { transitions from } s_{i} \text { to } s_{j}\right]}{\#\left[\text { transition from } s_{i}\right]}=\frac{\sum_{k} \sum_{t=1}^{T-1} I\left(q_{t}^{k}=s_{i} \text { and } q_{t+1}^{k}=s_{j}\right)}{\sum_{k} \sum_{t=1}^{T-1} I\left(q_{t}^{k}=s_{i}\right)}
\end{aligned}
$$

E.G. $\hat{a}_{i j}$ is no. of times a blue ball is followed a red ball divided by the total no. of red balls
NOTE The counts \# are sufficient statistics for the MM (see previous lecture).
ML estimate of the parameters equates empirical statistics with model statistics ML

$$
\hat{A}, \hat{\pi}=\arg \max \prod_{k=1}^{K} P\left(O=Q_{k} \mid A, \pi\right)
$$

Hidden Markov Models (HMMs)

States are not directly observable, but we have an observation from each state state $q_{t} \in\left\{s_{1}, \ldots, s_{N}\right\}$
observable $O_{t} \in\left\{v_{1}, \ldots, v_{M}\right\}$
$b_{j}(m) \equiv P\left(O_{t}=v_{m} \mid q_{t}=s_{j}\right)$: observation prob. that we observe v_{m} if the state is s_{j}
Two sources of stochasticity:
The observation $b_{j}(m)$ is stochastic
The transition $a_{i j}$ is stochastic
Back to the urn analogy: Let the urn contain balls with different colors
E.G. Urn: mostly red, Urn2: mostly blue, Urn3: mostly green

The observation is the ball color, but we don't know which urn it comes from (the state)

Hidden Markov Models

Elements: 1. N: Number of states $S=\left\{s_{1}, \ldots, s_{N}\right\}$
2. M: Number of observation symbols in alphabet $V=\left\{v_{1}, \ldots, v_{M}\right\}$
3. State transition probability $A=\left\{a_{i j}\right\}, a_{i j}=P\left(q_{t+1}=s_{j} \mid q_{t}=s_{i}\right)$
4. Observation probabilities $B=\left\{b_{j}(m)\right\}, b_{j}(m)=P\left(O_{t}=v_{m} \mid q_{t}=s_{j}\right)$
5. Initial state probabilities $\pi=\left\{\pi_{i}\right\}, \pi_{i}=P\left(q_{1}=s_{j}\right)$
$\lambda=(A, B, \pi)$ Specify the parameter set of an HMM

Three Basic Problems

(1) Given a model λ, evaluate the $P(O \mid \lambda)$ of any sequence $O=\left(O_{1}, O_{2}, \ldots O_{T}\right)$
(2) Given a model and observation sequence O, find state sequence $Q=\left\{q_{1}, q_{2}, \ldots, q_{T}\right\}$, which has highest probability of generating O : $Q^{*}=\arg \max _{Q} P(Q \mid O, \lambda)$
(3) Given training et of sequence $X=\left\{O^{k}\right\}$, find $\lambda^{*}=\arg \max P(X \mid \lambda)$

HMMs - Problem 1. Evaluation

Given an observation $O=\left(O_{1}, O_{2}, \ldots O_{T}\right)$ and a state sequence Q, the probability of observing O given Q is

$$
P(O \mid Q, \lambda)=\prod_{t=1}^{T} P\left(O_{t} \mid q_{t}, \lambda\right)=b_{q_{1}}\left(O_{1}\right) b_{q_{2}}\left(O_{2}\right) \cdots b_{q_{T}}\left(O_{T}\right)
$$

But we don't know Q
The prior probability of state sequence is $P(O \mid \lambda)=P\left(q_{1}\right) \prod_{t=2}^{T} P\left(q_{t} \mid q_{t-1}\right)=\pi_{q_{1}} a_{q_{q} q_{2}} \cdots a_{q_{T-1}, q_{T}}$
Joint probability $P(O, Q \mid \lambda)=P\left(q_{1}\right) \prod_{t=2}^{T} P\left(q_{t} \mid q_{t-1}\right) \prod_{t=1}^{T} P\left(O_{t} \mid=2 q_{t}\right)$

$$
=\pi_{q_{1}} b_{q_{1}}\left(O_{1}\right) a_{q_{1} q_{2}} b_{q_{2}}\left(O_{2}\right) \cdots a_{q_{r_{1}-q_{T}}} b_{q_{T}}\left(O_{T}\right)
$$

We can compute $P(O \mid \lambda)=\sum_{Q} P(O, Q \mid \lambda)$
But this summation is impractical directly, because there are too many possible $Q\left(|Q|=N^{T}\right)$

HMMs - Problem 1. Evaluation

But there is an efficient procedure to calculate $P(O \mid \lambda)$ called the forward-backward procedure (essentially - dynamic programming)
This exploits the Markov structure of the distribution

Divide the sequence into parts (1 to t) $\&(t+1$ to $T)$

Forward variable $\alpha_{t}(i)$ is probability of observing the partial sequence and being in state S_{t} at time t, (given the model λ): $\alpha_{t}(i)=P\left(O_{1}, \ldots, O_{t}, q_{t}=s_{i} \mid \lambda\right.$)

$$
\begin{aligned}
& \text { This can be computed recursively } \\
& \text { Initialization: } \begin{aligned}
\alpha_{1}(i) & =P\left(O_{1}, q_{1}=s_{i} \mid \lambda\right) \\
& =P\left(O_{1} \mid q_{1}=s_{i}, \lambda\right) P\left(q_{1}=s_{i} \mid \lambda\right) \\
& =\prod_{i} b_{i}\left(O_{1}\right)
\end{aligned}
\end{aligned}
$$

$$
\text { Recursive: } \alpha_{t+1}(i)=\left\{\sum_{i=1}^{N} \alpha_{t}(i) a_{i j}\right\} b_{j}\left(O_{t+1}\right)
$$

HMMs - Problem 1. Evaluation

Intuition: $\alpha_{t}(i)$ explains first t observations and ends in state s_{i}
\times probability $a_{i j}$ to get to state s_{j} at $t+1$
\times probability of generating $(t+1)$ th observation $b_{j}\left(O_{t}+1\right)$
Then sum over all possible states s_{i} at time t
$\Rightarrow P(O \mid \lambda)=\sum_{i=1}^{N} P\left(O, q_{T}=s_{i} \mid \lambda\right)=\sum_{i=1}^{N} \alpha_{T}(i)$
Computing $\alpha_{t}(i)$ is $O\left(N^{2} T\right)$
This solves the first problem - computing the probability of generating the data given the model
An alternative algorithm (which we need later) is backward variable $\beta_{t}(i) \equiv P\left(O_{t+1}, \ldots O_{T} \mid q_{t}=s_{i}, \lambda\right)$
Finalize recursion: $\beta_{T}(i)=1$

$$
\beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(O_{t+1}\right) \beta_{t+1}(j)
$$

HMMs - Problem 2. Finding the state sequence

Again, exploit the linear structure
Greedy Define $\delta_{t}(i)$ in probability of state s_{i} at time tgiven O and λ

$$
\delta_{t}(i)=P\left(q_{t}=s_{t} \mid O, \lambda\right)=\frac{P\left(O \mid q_{t}=s_{i}, \lambda\right) P\left(q_{t}=s_{i} \mid \lambda\right)}{P(O \mid \lambda)}=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{j=1}^{N} a_{t}(j) \beta_{t}(j)}
$$

Forward variable $\alpha_{t}(i)$ explains the starting part of the sequence until time t ending in s_{i}, backward variable $\beta_{t}(i)$ explains the remaining part of the sequence up to time T
We can try to estimate the state by choosing $q_{t}^{*}=\arg \max _{i} \delta_{t}(i)$ for each t
But, this ignores the relations between neighboring states.
It may be inconsistent $q_{t}^{*}=s_{i}, q_{t+1}^{*}=s_{j}$ but $a_{i j}=0$

HMMs - Viterbi Algorithm (Dynamic Programming)

Define $\delta_{t}(i)$ is the probability of the highest probability path that accounts for all the first t observations and ends in s_{i}

$$
\delta_{t}(i)=\max _{q_{1}, \ldots, q_{t}} P\left(q_{1}, q_{2}, \ldots, q_{t-1}, q_{t}=s_{i}, O_{1}, \ldots O_{t} \mid \lambda\right)
$$

Calculate recursively

1. Initialize $s_{1}(i)=\pi_{i} b_{i}\left(O_{1}\right), \psi_{1}(i)=0$
2. Recursion $\delta_{t}(j)=\max _{i} \delta_{t-1}(i) a_{i j} b_{j}\left(O_{t}\right)$

$$
\psi_{t}(j)=\arg \max _{i} \delta_{t-1}(i) a_{i j}
$$

Intuition

$\psi_{t}(j)$ keeps track of the state that maximizes $\delta_{t}(j)$ at time $t-1$
3. Termination $p^{*}=\max _{i} s_{T}(i) \quad$ Same complexity $O\left(N^{2} T\right)$

$$
q_{T}^{*}=\underset{i}{i} \arg _{i} s_{T}(i)
$$

4. Path (state sequence) backtracking: $q_{T}^{*}=\psi_{t+1}\left(q_{t+1}^{*}\right), t=T-1, T-2, \ldots, 1$

HMMs - Baum-Welch algorithm (EM)

At each iteration,
E-step Compute $\zeta_{t}(i, j) \& \gamma_{t}(i)$ given current $\lambda=(A, B, \pi)$
M-step Recalculate λ given $\zeta_{t}(i, j) \& \gamma_{t}(i)$
Alternate the two steps until convergence
Indicator variables $Z_{i}^{t}=\left\{\begin{array}{l}1, \text { if } q_{t}=s_{i} \\ 0, \text { otherwise }\end{array}\right.$ and $Z_{i j}^{t}=\left\{\begin{array}{l}1, \text { if } q_{t}=s_{i} \& q_{t+1}=s_{j} \\ 0, \text { otherwise }\end{array}\right.$
(Note, these are 0/1 in case of observable Markov model)
Estimate them in the E-step as $E\left[Z_{i}^{t}\right]=\gamma_{t}(i)$

$$
E\left[Z_{i j}^{t}\right]=\zeta_{t}(i, j)
$$

In M-step, count the expected number of transitions from s_{i} to $s_{j}\left(\sum_{t} \zeta_{t}(i, j)\right)$ and total number of transitions from $s_{i}\left(\sum_{t} \gamma_{t}(i)\right)$

HMMs - Baum-Welch algorithm (EM)

This gives transition probability from s_{i} to s_{j}

$$
\hat{a}_{i j}=\frac{\sum_{t=1}^{T-1} \zeta_{t}(i, j)}{\sum_{t=1}^{T-1} \gamma_{t}(i)} \quad \hat{b}_{j}=\frac{\sum_{t=1}^{T} \gamma_{t}(j) I\left(O_{t}=v_{m}\right)}{\sum_{t=1}^{T} \gamma_{t}(j)}
$$

Soft counts instead of real counts

For multiple observation sequences:

$$
\begin{aligned}
& X=\left\{O^{k}: k=1, \ldots, K\right\} \\
& P(X \mid \lambda)=\prod_{k=1}^{K} P\left(O^{k} \mid \lambda\right)
\end{aligned}
$$

$$
\begin{aligned}
& \hat{a}_{i j}=\frac{\sum_{k=1}^{K} \sum_{t=1}^{T_{k-1}} \zeta_{t}^{k}(i, j)}{\sum_{k=1}^{K} \sum_{t=1}^{T_{k-1}} \gamma_{t}^{k}(i)} \\
& \hat{b}_{j}(m)=\frac{\sum_{k=1}^{K} \sum_{t=1}^{T_{k-1}} \gamma_{t}^{k}(j) I\left(O_{t}^{k}=v_{m}\right)}{\sum_{k=1}^{K} \sum_{t=1}^{T_{k-1}} \gamma_{t}^{k}(j)} \\
& \hat{\pi}_{i}=\frac{\sum_{k=1}^{K} \gamma_{1}^{k}(i)}{K}
\end{aligned}
$$

HMMs -- Recapulation

We have given algorithm to solve the three problems:
(1) Compute $P(O \mid \lambda)$
(2) Compute $Q^{*}=\arg \max P(Q \mid O, \lambda)$
(3) Compute $\lambda^{*}=\arg \max P(X \mid \lambda)$
$P(O \mid \lambda)$ is used for model selection
Suppose we have two alternative models for the data $P\left(O \mid \lambda_{1}\right), P\left(O \mid \lambda_{2}\right)$
Select model 1, if $P\left(O \mid \lambda_{1}\right)>P\left(O \mid \lambda_{2}\right)$
model 2, otherwise
I.E. detect which model generates the sequences

This for multiple models with training data for each

$$
\lambda_{1}^{*}, \ldots, \lambda_{w}^{*}=\arg \max _{X} P\left(X^{1} \mid \lambda\right) P\left(X^{2} \mid \lambda\right) \ldots P\left(X^{w} \mid \lambda\right)
$$

Use this to build speech recognition system

- HMMs have been applied to computer vision for problems involving time sequences.
- Examples: (i) modeling tennis strokes, (ii) modeling sequences of actions in a baseball game.
- MMs relate to LSTM neural network models. Now popular as large language models.
- HMMs and MMs are exponential distributions with sufficient statistics count frequencies - and can be derived from exponential models with and without hidden variables.
- The are probabilities on graphs without closed loops. So dynamic programming can be used for inference and learning.

