
Vision as Bayesian Inference

Discrete Markov Processes

• This is a Markov Model probability distribution for a sequence.
• Two cases: (I) observable Markov Models, (II) hidden Markov Models
• Both are exponential distributions. There are no closed loops so Dynamic 

Programming can be used for inference.
• Hidden Markov Models were state-of-the-art for Speech Recognition.

Discrete Markov Processes

1 1( | , , )t j t i t kP q s q s q s+ −= = = 

N-distinct state s1, …, sN

State at time t : qt

Lecture HMM-01

qt = si : system in state si
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Lecture HMM-02

First-order Markov Model

The future is independent of the past, except for the proceeding time 
state

1 1 1( | , , ) ( | )t j t i t k t j t iP q s q s q s P q s q s+ − += = = = = =

Transition probability 1( | )ij t j t ia P q s q s+= = =

1
0, 1 for all 

N

ij ij
j

a a i
=

≥ =∑

Transition probability is independent of time
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Lecture HMM-03

Observable Markov Model

Initial probability ( )i i iP q sπ ≡ = 1 2

3
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3π
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a33
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a13In an observable Markov model, we can 
directly observe the states {qt}

This enables us to learn the transition probabilities

Observation sequence 1{ , , }TO Q q q= = 
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Observable Markov Model

Example  Urns with 3 types of ball
s1=red, s2=blue, s3=green (state: the urn we draw the ball from)

[0.5, 0.2, 0.3]π =Initial probability:
Transition aij 0.4 0.3 0.3

0.2 0.6 0.2
0.1 0.1 0.8

A =  
 
 
  

Sequence O={s1, s1, s3, s3}

1 1 1 3 1 3 3

1 11 13 33

( | , ) ( ) ( | ) ( | ) ( | )
0.5 0.4 0.3 0.8 0.048

P O A P s P s s P s s P s s
a a a

π
π

=
= ⋅ ⋅ ⋅ = × × × =

Lecture HMM-04
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Learning Parameters for MM

Suppose we have K sequence of length T qt : state at time t of kth sequence

1( )#[sequence starting with ]ˆ
#[sequence]

k
ii k

i

I q ss
K

π
=

= = ∑

1
11
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1

(  and )#[transitions from  to ]
ˆ

#[transition from ] ( )

T k k
t i t ji j k t

ij T k
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I q s q ss s
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s I q s

−
+=

−

=

= =
= =

=
∑ ∑

∑ ∑
E.G.      is no. of times a blue ball is followed a red ball divided by the total no. of 
red balls

ˆija

NOTE The counts # are sufficient statistics for the MM (see previous lecture).
ML estimate of the parameters equates empirical statistics with  model statistics ML 

1

ˆ ˆ, arg max ( | , )
K

k
k

A P O Q Aπ π
=

= =∏
Lecture HMM-05
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Hidden Markov Models (HMMs)

States are not directly observable, but we have an observation from each 
state

Lecture HMM-06

state 

observable 
1{ , , }t Nq s s∈ 

1{ , , }t MO v v∈ 

( ) ( | )j t m t jb m P O v q s≡ = = : observation prob. that we observe vm if the state is sj

Two sources of stochasticity:
The observation             is stochastic
The transition       is stochastic

( )jb m
ija

Back to the urn analogy: Let the urn contain balls with different colors
E.G. Urn: mostly red, Urn2: mostly blue, Urn3: mostly green

The observation is the ball color, but we don’t know which urn it comes from (the state)
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Hidden Markov Models

Elements: 

Lecture HMM-07

1. N: Number of states
2. M: Number of observation symbols in alphabet
3. State transition probability
4. Observation probabilities
5. Initial state probabilities

1{ , , }NS s s= 

1{ , , }MV v v= 

1{ }, ( | )ij ij t j t iA a a P q s q s+= = = =
{ ( )}, ( ) ( | )j j t m t jB b m b m P O v q s= = = =

1{ }, ( )i i jP q sπ π π= = =

( , , )A Bλ π= Specify the parameter set of an HMM
Three Basic Problems

(1) Given a model λ, evaluate the P(O|λ) of any sequence O=(O1, O2, … OT)

(2) Given a model and observation sequence O, find state sequence Q={q1, q2, …, qT}, 
which has highest probability of generating O: Q*=arg maxQ P(Q|O,λ)

(3) Given training et of sequence X={Ok}, find λ*=arg max P(X|λ) 
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HMMs – Problem 1. Evaluation 

Given an observation O=(O1, O2, … OT) and a state sequence Q, the probability of 
observing O given Q is

Lecture HMM-08

1 21 2
1

( | , ) ( | , ) ( ) ( ) ( )
T

T

t t q q q T
t

P O Q P O q b O b O b Oλ λ
=

= =∏ 

But we don’t know Q
The prior probability of state sequence is

1 1 2 11 1
2

( | ) ( ) ( | )
T T

T

t t q q q q q
t

P O P q P q q a aλ π
−−

=

= =∏ 

Joint probability

1 1 1 2 2 1

1 1
2 1

1 2
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T T

t t t t
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P O Q P q P q q P O q

b O a b O a b O

λ

π
−

−
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=
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We can compute ( | ) ( , | )
Q

P O P O Qλ λ=∑
But this summation is impractical directly, because there are too many possible Q (|Q|=NT)
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HMMs – Problem 1. Evaluation

But there is an efficient procedure to calculate P(O|λ) called the forward-backward 
procedure (essentially – dynamic programming)

This exploits the Markov structure of the distribution

Lecture HMM-09

q1 q2 qT

O1 O2 OT

Divide the sequence into parts

(1 to t) &(t+1 to T)

Forward variable αt(i) is probability of observing the partial sequence and 
being in state St at time t, (given the model λ): 1( ) ( , , , | )t t t ii P O O q sα λ= =

This can be computed recursively
Initialization: Recursive: 1 1 1

1 1 1

1

( ) ( , | )
( | , ) ( | )

( )

i

i i

ii

i P O q s
P O q s P q s

b O

α λ
λ λ

= =
= = =
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1 1
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( ) ( ) ( )
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t t ij j t
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i i a b Oα α+ +
=

 
=  
 
∑
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HMMs – Problem 1. Evaluation

Intuition: αt(i) explains first t observations and ends in state si

Lecture HMM-10

× probability aij to get to state sj at t+1
× probability of generating (t+1)th observation bj(Ot+1) 
Then sum over all possible states si at time t

1 1
( | ) ( , | ) ( )

N N

T i T
i i

P O P O q s iλ λ α
= =

= = =∑ ∑
Computing αt(i) is O(N2T)

This solves the first problem – computing the probability of generating the data given the model
An alternative algorithm (which we need later) is backward variable 1( ) ( , | , )t t T t ii P O O q sβ λ+≡ =

1 1
1

( ) 1

( ) ( ) ( )

T
N

t ij j t t
j

i

i a b O j

β

β β+ +
=

=

=∑

Finalize recursion:
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HMMs – Problem 2. Finding the state sequence

Again, exploit the linear structure

Lecture HMM-11

Greedy Define δt(i) in probability of state si at time t given O and λ

1

( | , ) ( | ) ( ) ( )( ) ( | , )
( | ) ( ) ( )

t i t i t t
t t t N

t tj

P O q s P q s i ii P q s O
P O a j j

λ λ α βδ λ
λ β

=

= =
= = = =

∑
Forward variable αt(i) explains the starting part of the sequence until time t 
ending in si, backward variable βt(i) explains the remaining part of the sequence 
up to time T

We can try to estimate the state by choosing                                 for each t* arg max ( )t ti
q iδ=

But, this ignores the relations between neighboring states. 
It may be inconsistent * *

1, but 0t i t j ijq s q s a+= = =
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HMMs – Viterbi Algorithm (Dynamic Programming)

Lecture HMM-12

Define δt(i) is the probability of the highest probability path that accounts for all the 
first t observations and ends in si

1
1 2 1 1, ,

( ) max ( , , , , , , | )
t

t t t i tq q
i P q q q q s O Oδ λ−= =


 

Calculate recursively
1. Initialize
2. Recursion

3. Termination

4. Path (state sequence) backtracking:

Intuition
1 1 1( ) ( ), ( ) 0i is i b O iπ ψ= =

1( ) max ( ) ( )t t ij j ti
j i a b Oδ δ −=

1( ) arg max ( )t t iji
j i aψ δ −=

* max ( )Ti
p s i=

* arg max ( )T Ti
q s i=

ψt(j) keeps track of the state that 
maximizes δt(j) at time t-1
Same complexity O(N2T)

* *
1 1( ), 1, 2, ,1T t tq q t T Tψ + += = − − 
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HMMs – Baum-Welch algorithm (EM)

At each iteration,

Lecture HMM-13

E-step Compute ζt(i, j) & γt(i) given current λ=(A,B,π)

M-step Recalculate λ given ζt(i, j) & γt(i) 

Alternate the two steps until convergence

Indicator variables                                  and 
1,if   
0,otherwise

t it
i

q s
Z

=
= 


11, if &
0,otherwise              

t i t jt
ij

q s q s
Z += =

= 


(Note, these are 0/1 in case of observable Markov model)

Estimate them in the E-step as  [ ] ( )t
i tE Z iγ=

[ ] ( , )t
ij tE Z i jζ=

In M-step, count the expected number of transitions from si to sj  
                    and total number of transitions from si 

( )( , )tt
i jζ∑

( )( )tt
iγ∑
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HMMs – Baum-Welch algorithm (EM)

This gives transition probability from si to sj 

Lecture HMM-14

1
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∑
Soft counts instead 
of real counts

For multiple observation sequences:
{ : 1, , }kX O k K= = 

1
( | ) ( | )K k

k
P X P Oλ λ

=
=∏
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HMMs -- Recapulation

We have given algorithm to solve the three problems: 

Lecture HMM-15

(1) Compute P(O|λ)
(2) Compute 
(3) Compute

* arg max ( | , )Q P Q O λ=
* arg max ( | )P Xλ λ=

P(O|λ) is used for model selection
Suppose we have two alternative models for the data P(O|λ1), P(O|λ2)

Select model 1, if
            model 2, otherwise

1 2( | ) ( | )P O P Oλ λ>

I.E. detect which model generates the sequences
       This for multiple models with training data for each

* * 1 2
1 , , arg max ( | ) ( | ) ( | )w

w X
P X P X P Xλ λ λ λ λ= 

Use this to build speech recognition system
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• HMMs have been applied to computer vision for problems involving time 
sequences.

• Examples: (i) modeling tennis strokes, (ii) modeling sequences of actions in 
a baseball game.

• MMs relate to LSTM neural network models. Now popular as large
language models.

• HMMs and MMs are exponential distributions with sufficient statistics –
count frequencies – and can be derived from exponential models with and 
without hidden variables.

• The are probabilities on graphs without closed loops. So dynamic
programming can be used for inference and learning.
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