
Boltzmann Machine

Alan Yuille

Feb 5 2024

Boltzmann Machine: The Gibbs Distribution

▶ The probability distribution for N neurons S⃗ = (s1, ..., sN), where each si
takes value 0 or 1, is defined by a Gibbs distribution with energy
E(S⃗) = −1

2

∑
ij ωijsi sj and distribution:

P(S⃗) =
1

Z
exp{−E(S⃗)/T}. (1)

▶ State configurations S⃗ with low energy E(S⃗) will correspond to high

probabilities P(S⃗). Z is specified by the normalization condition∑
S⃗ P(S⃗) = 1, by Z =

∑
S⃗ exp{−E(S⃗)/T}. The ωij are the weights of the

distribution (like weights in a neural network) and are symmetric
ωij = ωji ∀i , j with ωii = 0, ∀i .

▶ The ”temperature” T controls the ”sharpness” of the distribution. For
very small T , the distribution is strongly peaked about
S⃗∗ = argminS⃗ E(S⃗). As T increases, the distribution becomes less peaked
as T becomes large (T 7→ ∞) all states become equally likely. Intuitively,
T is similar to the variance.

The Boltzmann Machine is already in the form of an exponentioal distribution.

The parameters are the {ωij}. The statistics are {SiSj}. This is an exponential
distribution because some of the states si areobserved and others are hidden.

We can learn the parameters of the Boltzmann Machine by the general
proceedure for learning exponential models described earlier in the course
(using the EM algorithm to deal with the hidden variables). The Boltzmann
Machine contains many closed loops so we cannot use algorithms like dynamic
programming for inference. Instead we use Gibbs sampling for estimating
quantities like the expected statistics.

But this was not known in 1983 when Hinton and Sejnowski invented the
Boltzmann Machine.

Boltzmann Machine: Inference

▶ The inference task is to compute, or estimate, the most probably state(s)

S⃗∗ = argmaxS⃗ P(S⃗) = argminS⃗ E(S⃗). But this is impossible because S⃗ takes
2N possible states and so we cannot simply evaluate the probability of every
state and find the maximum, and similarly we cannot compute Z . (But there

are a few special cases where computing S⃗∗ is possible).

▶ We have discussed two types of algorithm that can get approximate estimates
of S⃗∗: (I) Gibbs Sampling. (II) Mean Field Theory.

▶ In this lecture we will be using Gibbs sampling. Recall that this: (i) initializes

the states S⃗ randomly, (ii) selects a node i at random, (iii) samples si from the

conditional distribution P(si |S⃗/i) =
exp si{

∑
j wij sj}

1+exp{
∑

j wij sj}
, and (iv) repeat (ii) and (iii).

▶ It can be shown that Gibbs sampling converges to samples S⃗ from P(S⃗). This
implies that the final states will have high probabilities. So if we have a set
{S⃗n : n = 1, ...,N} from P(S⃗) then they are likely to have high probabilities

{P(S⃗n) : n = 1, ...,N} and be close to S⃗∗. Importantly, for this lecture, we can

approximate the expected statistics of P(S⃗) by

< sjsj >=
∑

S⃗ si sjP(S⃗) ≈
∑N

n=1 s
n
i s

n
j .

Boltzmann Machine: Learning

▶ Divide the nodes into two classes Vo and Vh, which are the observed (input)

and hidden nodes respectively. S⃗o and S⃗h denote the states of the observed and
the hidden nodes respectively. The components of S⃗o and S⃗h are {Si : i ∈ Vo}
and {Si : i ∈ Vh} respectively. S⃗ = (S⃗o , S⃗h).

▶ We re-express the distribution over the states as:

P(S⃗o , S⃗h) =
1

Z
exp{−E(S⃗)/T}. (2)

The marginal distribution over the observed nodes is

P(S⃗o) =
∑
S⃗h

1

Z
exp{−E(S⃗)/T}. (3)

▶ We estimate a distribution R(S⃗0) of the observed nodes (from the observed

data {S⃗n
o : n = 1, ...,N} where N are the number of training examples). The

goal of learning is to adjust the weights ω⃗ of the model (i.e. the {ωij}) so that

the marginal distribution P(S⃗o) of the model is as similar as possible to the

observed model R(S⃗0).

▶ This requires specifying a similarity criterion which is chosen to be the
Kullback-Leibler divergence:

KL(w⃗) =
∑
S⃗o

R(S⃗o) log
R(S⃗o)

P(S⃗o)
(4)

Boltzmann Machine: The Learning Rule

▶ The Boltzmann Machine adjusts the weights by the iterative update rule:

wij 7→ wij +∆wij (5)

∆wij = −δ
∂KL(w⃗)

ωij
(6)

∆wij = − δ

T
{< SiSj >clamped − < SiSj >} (7)

▶ Here δ is a small positive constant. The derivation of the update rule is given
in later slides (so is how to compute the update rule).

▶ < SiSj >clamped and < SiSj > are the expectation (e.g., correlation) between
the state variables Si , Sj when the data is generated by the clamped

distribution R(S⃗o)P(S⃗h|S⃗o) and by the distribution P(S⃗o , S⃗h) respectively.

▶ I.e. < SiSj >=
∑

S⃗ SiSjP(S⃗). The conditional distribution P(S⃗h|S⃗o) is the
distribution over the hidden states conditioned on the observed states. So it is
given by P(S⃗h|S⃗o) = P(S⃗h, S⃗o)/P(S⃗o).

Boltzmann Machine: Understanding the Learning Rule

▶ The learning rule, equation (7), has two components. The first term
< SiSj >clamped is Hebbian and the second term < SiSj > is anti-Hebbian
(because of the sign). This is a balance between the activity of the model when
it is driven by input data (i.e. clamped) and when it is driven by itself. A wild
speculation is that the Hebbian learning is done when you are awake, hence
exposed to external stimuli, while the anti-Hebbian learning is done when you
are asleep with your eyes shut but, by sampling from P(S⃗o |S⃗h) you are creating
images, or dreaming.

▶ The algorithm will convergence when the model accurately fits the data, i.e..
when < SiSj >clamped=< SiSj > and the right hand side of the update rule,
equation (7), is zero.

▶ What is the observed distribution R(S⃗o)? We do not know R(S⃗o) exactly and

so we approximate it by the training data {S⃗µ
o ;µ = 1, ...,N}. This is equivalent

to assuming that

R(S⃗) =
1

N

N∑
µ=1

δ(S⃗o − S⃗µ
o) (8)

.

Estimating the < SiSj >

▶ The Boltzmann Machine requires computing < SiSj >clampaed and < SiSj >.
This is done by Gibbs sampling (earlier lectures). .

▶ By performing Gibbs sampling multiple times on the distribution P(S⃗o , S⃗h) we

obtain M samples S⃗
1
, ..., S⃗

M
. Then we can approximate < SiSj > by:

< SiSj >≈ 1

M

M∑
a=1

Sa
i S

a
j (9)

▶ Similarly we can obtain samples from R(S⃗o)P(S⃗h|S⃗o) (the clamped case) by

first generating samples S⃗o
1
, ..., S⃗o

M
from R(S⃗0) and then converting them to

samples

S⃗
1
, ..., S⃗

M
(10)

where S⃗ = (S⃗o
i
, S⃗h

i
), and S⃗h

i
is a random sample from P(S⃗h|S⃗o), again

performed by Gibbs sampling.

▶ How do we sample from R(S⃗o)? Recall that we only know samples

{S⃗µ
o ;µ = 1, ...,N} (the training data). Hence sampling from R(S⃗o) reduces to

selecting one of the training examples at random.

▶ Gibbs sampling is not a very effective algorithm. So Boltzmann machines are
hard to use in practice (with extra ingredients).

Derivation of the BM update rule (I)

▶ To justify the learning rule, equation (7), we need to take the derivative of the
cost function ∂KL(ω⃗)/∂ωij .

∂KL(w⃗)

∂ωi j
= −

∑
S⃗o

R(S⃗o)

P(S⃗o)

∂P(S⃗o)

∂ωij
(11)

▶ Expressing P(S⃗o) =
1
Z

∑
S⃗h
exp{−E(S⃗)/T}, we can express ∂P(S⃗o)

∂ωij
in two

terms:

1

Z

∂

∂ωij

∑
S⃗h

exp{−E(S⃗)/T} − 1

Z

∑
S⃗h

exp{−E(S⃗)/T)}∂ logZ

∂ωij
(12)

▶ This can be re-expressed as:

−1

T

∑
S⃗h

SiSjP(S⃗) + {
∑
S⃗h

P(S⃗)
1

T

∑
S⃗

SiSjP(S⃗)} (13)

Derivation of the BM update rule (II)

▶ Hence we can compute:

∂P(S⃗o)

∂ωij
=

−1

T

∑
S⃗h

SiSjP(S⃗) + P(S⃗o)
1

T

∑
S⃗

SiSjP(S⃗) (14)

▶ Substituting equation (14) into equation (11) yields

∂KL(w⃗)

∂ωi j
=

1

T

∑
S⃗h,S⃗o

SiSj
P(S⃗)

P(So)
R(S⃗o)−

1

T
{
∑
S⃗o

R(S⃗o)}
∑
S⃗

SiSjP(S⃗) (15)

▶ Which can be simplified to give:

∂KL(w⃗)

∂ωi j
=

1

T

∑
S⃗

SiSjP(S⃗h|S⃗o)R(S⃗o)−
1

T

∑
S⃗

SiSjP(S⃗) (16)

▶ Note this derivation requires ∂ logZ/∂wij =
∑

S⃗ SiSjP(S⃗).

Boltzmann Machine is Maximum Likelihood Learning

▶ The Kullback-Leibler criterion, equation (4), can be expressed as:

KL(ω⃗) =
∑
S⃗

R(S⃗o) logR(S⃗o)−
∑
S⃗

R(S⃗o) logP(S⃗o) (17)

▶ Only the second term depends on ω⃗ so we can ignore the first (since we want
to minimize KL(ω⃗) with respect to ω⃗).

▶ Using the expression for R(S⃗o) in terms of the training data, equation (8), we
can express the second term as:

− 1

N

∑
S⃗o

1

N

N∑
a=1

δ(S⃗o − S⃗a
o) logP(S⃗o) (18)

− 1

N

1

N

N∑
a=1

logP(S⃗a
o) (19)

▶ This is precisely, the Maximum Likelihood criterion for estimating the
parameters of the distribution P(S⃗o). This shows that Maximum Likelihood is
a good strategy to learn a distribution even if we do not know the correct form
of the distribution. We are simply finding the best fit model.

Boltzmann Machine learns by Expectation-Maximization

▶ The Boltzmann Machine (BM) learning is a special case of the
Expectation-Maximization (EM) algorithm. This algorithm can be applied to
any learning problem where some variables are unobservable.

▶ For the BM, the distribution is P(S⃗o , S⃗h;ω) with observed data

{S⃗n
o : n = 1, ...,N}. We do not know the {S⃗n

h : n = 1, ...,N}, so the S⃗h are
hidden, missing, or latent variables.

▶ In theory we can compute the marginal distribution
P(S⃗o ;ω) =

∑
S⃗h
P(S⃗o , S⃗h;ω). Then we can learn the weights {ωij} by

Maximum Likelihood: minimizing

−
N∑

n=1

logP(S⃗o ;ω), w.r.t. ω.

▶ The problem is that we cannot compute P(S⃗o ;ω) explicitly. This is where we
need EM.

BM and EM: part 1

▶ We define a new (unknown) distributions Qn(S⃗h) =
∏m

i=1 q
n
i (S

i
h) n = 1, ..N,

where the {S i
h : i = 1, ..,m} are the components of the hidden variables S⃗h.

▶ We define a free energy:

F(Q, ω) = −
N∑

n=1

logP(S⃗n
o ;ω) +

N∑
n=1

∑
S⃗n
h

Qn(S⃗n
h) log

Qn(S⃗n
h)

P(S⃗n
h |S⃗n

o ;ω)
.

▶ This has two important properties. Firstly, we can minimize F(Q, ω) with

respect to each Qn(.) to obtain Qn(S⃗n
h) = P(S⃗n

h |S⃗n
o ;ω). Substituting this value

of Qn(.) back into F(Q, ω) yields −
∑N

n=1 logP(S⃗
n
o ;ω).

▶ Therefore minimizing F(Q, ω) with respect to Q and ω is equivalent to

performing ML on P(S⃗o ;ω).

▶ This follows from the facts that
∑

S⃗ Q(S⃗) log Q(S⃗)

P(S⃗)
≥ 0 and = 0 only when

Q(S⃗) = P(S⃗).

BM and EM: part 2

▶ The second property is that we can minimize F(Q, ω) by alternatively
minimizing with respect to Q and to ω. This is the EM algorithm.

▶ Minimizing w.r.t. Q(.) gives Qn(S⃗n
h) = P(S⃗n

h |S⃗n
o ;ω).

▶ Minimizing w.r.t. ω gives:

ωij = argmin
N∑

n=1

Qn(S⃗n
h) logP(S⃗ ;ω) = argmin−{

N∑
n=1

Qn(S⃗n
h)E(S⃗)− logZ(ω)}.

▶ This exploits P(S⃗h|S⃗o ;ω)P(S⃗o ;ω) = P(S⃗h, S⃗o ;ω).

▶ For the BM, these minimizations reduce to the BM learning rule (after some
algebra). Gibbs sampling is needed to perform each step. Note: there is no
guarantee that the EM algorithm will converge to the global optimum (i.e. to
the real ML estimate).

The Restricted Boltzmann Machine

▶ RBMs are a special case of Boltmann Machines where there are no weights
connecting the hidden nodes to each other with energy:

E(S⃗) =
∑

i∈Vo , j∈Vh

ωijSiSj . (20)

▶ The conditional distributions P(S⃗h|S⃗o) and P(S⃗o |S⃗h) can both be factorized:

P(S⃗o |S⃗h) =
∏
i∈Vo

P(Si |S⃗h), P(S⃗h|S⃗o) =
∏
j∈Vh

P(Sj |S⃗o) (21)

▶ For i ∈ Vo , P(Si |S⃗h) =
1
Zi
exp{−(1/T)Si (

∑
j∈Vh

ωijSj)}. Zi is the

normalization constant Zi =
∑

Si∈{0,1} exp{−(1/T)Si (
∑

j∈Vh
ωijSj)} – and

similarly for P(Sj |S⃗o) for j ∈ Vh.

▶ These factorization means that we can sample from P(S⃗o |S⃗h) and P(S⃗h|S⃗o)

very rapidly (e.g., by sampling from P(Si |S⃗h)). This makes learning fast and

practical. Estimating < SiSj >clamped requires sampling from P(S⃗h|S⃗o), which is

very fast. Estimating < SiSj >, requires sampling from P(S⃗o , S⃗h) by

alternatively sampling from P(S⃗o |S⃗h) and P(S⃗h|S⃗o). This must be done
multiple times until convergence (but it is much faster than Gibbs sampling).

▶ RBMs are too restricted to anything useful. But Hinton (2006) suggested
stacking them on top of each other to create a Deep Network.

	Boltzmann Machine: Learning and EM: The Gibbs Distribution
	Boltzmann Machine and Exponential Distributions with Hidden Variables
	Boltzmann Machine: Inference
	Boltzmann Machine: Learning
	Boltzmann Machine: The Learning Rule
	Boltzmann Machine: Understanding the Learning Rule
	Estimating the <Si Sj>
	Derivation of the BM update rule (I)
	Derivation of the BM update rule (II)
	Boltzmann Machine is Maximum Likelihood Learning
	Boltzmann Machine learns by Expectation-Maximization
	BM and EM: part 1
	BM and EM: part 2
	The Restricted Boltzmann Machine

