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Learning Exponential Distributions

▶ This lecture describes how to represent probability distributions by
exponential models and hoe to learn their parameters by Maximum
Likelihood (M) estimation. Next lecture extends this to exponential
models with hidden variables which includes famous models like Hidden
Markov Models (HMMs) and the Boltzmann Machine as special cases.

▶ Exponential distributions are a large and important family of parametric
probability distributions which are specified by,sufficient statistics, The
distributions are derived from statistics by the Maximum Entropy
Principle. Most well known probability distributions like Gaussians are
members of this family.

▶ Maximum Likelihood (ML) is used to estimate their parameters from data.
ML can be interpreted in terms of finding the distribution which is closest
to the empirical distribution of the data. Hence ML finds the best
approximation to the data, given the statistics used by the model, and
justifies model pursuit which increases the statistics to find distributions
which approximate the data better.

▶ The lecture deals with distributions P(x) where x is typically multivariate
x = (x1, ..., xm). The distributions are defined over a graph with nodes
1, ...,m. Often this has a Markov Random Field structure, i.e., with
neighborhoods, and the distributions can have closed loops (as in the
previous lecture).



Learn Exponential Distributions Overview

▶ Firstly we describe basic ML for a parametric probability model.

▶ Secondly we introduce exponential models and sufficient statistics which
give a general form for representing probability models. ML has a very
simple and intuitive interpretation for this case (and yields a simple
decision rule for binary classification based on the log-likelihood rule).

▶ Thirdly, we re-interpret ML in terms of making the ”best” approximation
to the data as measured by the Kullback-Leibler divergence. This has a
nice interpretation within information geometry. This explains why ML
makes sense if you have the wrong model. It also leads to a strategy where
you ”pursue” the probability model within a space of probability models.

▶ Finally, as an advanced topic, we describe the maximum entropy principle
which enables us to derive the probability models from their statistics
giving an alternative perspective.



Learning probability distributions by ML (1)

▶ Assume a parameterized model for the distribution of form p(x | θ), where
θ is the parameter. For example, a Gaussian distribution is specified by

p(x | µ, σ) = 1√
2πσ

e
− (x−µ)2

2σ2 with parameters θ = (µ, σ).

▶ We also assume that the training data XN = {x1, ..., xN} is independent
identically distributed (iid) from an (unknown) distribution p(x). Then the
probability of XN is given by p(XN) = p(x1, . . . , xN) =

∏N
i=1 p(xi ).Our task

is to select a parameterized distribution p(x |θ) and estimate its parameters
θ from XN .

▶ The Maximum Likelihood Estimator of θ is:

θ̂ = argmax
θ

p(x1, . . . , xN | θ)

= argmin
θ

{− log p(x1, . . . , xN | θ)}.

Equivalently, p(x1, . . . , xN | θ̂) ≥ p(x1, . . . , xN | θ), for all θ.



Learning by ML example

▶ Example: Gaussian distribution.
− log p(x1, . . . , xN | µ, σ) = −

∑N
i=1 log p(xi | µ, σ)

=
∑N

i=1
(xi−µ)2

2σ2 +
∑N

i=1 log
√
2πσ

▶ To estimate the parameters θ = (µ̂, σ̂) we differentiate w.r.t. µ, σ, i.e,
maximize log p(XN |µ, σ), which gives:

▶ ∂
∂µ

log p(x1, . . . , xN | µ, σ) = 1
σ2

∑N
i=1(xi − µ)

▶ ∂
∂σ

log p(x1, . . . , xN | µ, σ) = 1
σ3

∑N
i=1 (xi − µ)2 − N

σ

▶ The solution occurs at: µ̂ = 1
N

∑N
i=1 xi , σ̂

2 = 1
N

∑N
i=1 (xi − µ̂)2. This is a

special case because the ML estimate is given by an analytic formula but
for more complex distributions an algorithm will be needed.



Learning by ML

▶ Instead of ML we can use the Maximum a Posteriori (MAP) estimator if
we know a prior p(θ) for θ. This gives

θ̂MAP = argmax
θ

p(XN |θ)p(θ)
p(XN)

(note: p(XN) is independent of θ)

= argmax
θ

{log p(XN |θ) + log p(θ)}

= argmax
θ

{
N∑
i=1

log p(xi |θ) + log p(θ)},

(1)

▶ If N is large, then the prior will have little effect because we have N data
terms log p(xi |θ)and only one 1 prior term, log p(θ). For example, if we are
tossing a coin, we may start with a prior (fair coin, or some other), but
after a large number of tosses the prior has very little effect and only the
data matters,

▶ Cognitive scientists have examples where humans learn from limited data
by exploiting prior knowledge, but these are not relevant to this course.
More generally, we can formulate learning by Bayes Decision Theory and
include loss functions, particularly if we can to estimate conditional
distributions, and we will discuss this later in the course.



Exponential Distributions: Sufficient Statistics

▶ Exponential distributions are a general way for representing probability
distributions p(.) in terms of sufficient statistics ϕ⃗(.) and parameters λ⃗.

▶ The general form of an exponential distribution is:
p(x⃗ |λ⃗) = 1

Z [λ⃗]
exp{λ⃗ · ϕ⃗(x⃗)}, where Z [λ⃗] is the normalization factor,

λ⃗ = (λ1, λ2, ..., λM) are the parameters and

ϕ⃗(x⃗) = (ϕ1(x⃗), ϕ2(x⃗), ..., ϕM(x⃗)) are the statistics. The distribution

depends on the data x⃗ only by the function ϕ⃗(x⃗), hence ϕ⃗(.) is called the
sufficient statistics.

▶ Almost every named distribution can be expressed as an exponential
distribution, particularly if you allow hidden variables (next lecture). For
example: a Gaussian distribution in 1 dimension can be re-expressed as an

exponential model: ϕ⃗(x) = (x , x2) λ⃗ = (λ1, λ2), p(x⃗ |λ⃗) = 1

Z [λ⃗]
eλ1x+λ2x

2

.

This can be translated back to standard Gaussian form 1√
2πσ

e
−(x−µ)2

2σ2 .
λ2 = − 1

2σ2

λ1 =
µ
σ2

Z [λ⃗] =
√
2πσ exp µ2

2σ2



Learning Exponential Distributions by ML (1)

▶ We can learn exponential distributions by MLE. This gives a very intuitive
interpretation. MLE selects the parameter θ such that the expected
statistics ϕ⃗(.) of the model are equal to the expected statistics of the data.

▶ We want to maximize with respect to λ⃗:

p(XN) = p({x⃗1, x⃗2, · · · , x⃗N}|λ) =
∏N

i=1

eλ⃗·ϕ⃗(⃗xi )

Z [λ⃗]
. This has a simple form

because the exponential distribution depends on the data x⃗i only in terms
of the function ϕ⃗(x⃗i ), that is, the sufficient statistics.

▶ ML minimizes

− log
N∏
i=1

p(x⃗i |λ⃗) = −
N∑
i=1

log p(x⃗i |λ⃗).

For exponential distributions this corresponds to minimizing

F [λ⃗] = N logZ [λ⃗]−
N∑
i=1

λ⃗ · ϕ⃗(x⃗i ).

F [λ⃗] is a convex function of λ⃗ so its minimum can be found by
differentiation.



Learning Exponential Distributions by ML (2)

▶ Differentiating F [λ⃗] with respect to λ⃗ gives
∂F

∂λ⃗
= N

∑
x⃗ ϕ⃗(x⃗)p(x⃗ |λ⃗)−

∑N
i=1 ϕ⃗(x⃗i ). The minimum occurs at {̂⃗λ} such

that the expected statistics
∑

x⃗ ϕ⃗(x⃗)p(x⃗ |
ˆ⃗
λ) is equal to the data statistics

(1/N)ϕ⃗(x⃗i ).

▶ This result requires differentiating the log of the normalization function

Z [λ⃗] =
∑
x⃗

eλ⃗·ϕ⃗(⃗x). This yields
∂ logZ [λ⃗]

∂λ⃗
=

∑
x⃗ ϕ⃗(x⃗)p(x⃗ |λ⃗).

▶ Proof:
∂ logZ [λ⃗]

∂λ⃗
=

1

Z [λ⃗]

∂Z [λ⃗]

∂λ⃗
=

1

Z [λ⃗]

∑
x⃗ ϕ⃗(x⃗)e

λ⃗·ϕ⃗(⃗(x) =
∑

x⃗ ϕ⃗(x⃗)p(x⃗ |λ⃗).

▶ For example, for a Gaussian the model statistics x⃗ are∫
dx⃗x⃗

1√
(2πσ2)d

exp{−(1/2σ2)(x⃗ − µ⃗)2} = µ⃗. The data statistics are

1/N
∑N

i=1 x⃗i .



Learning Exponential Distributions by ML (3)

▶ For simple exponential distributions, like the Gaussian, the expected
statistics of the model can be computed analytically giving a function
f (λ) =

∑
x ϕ(x)p(x |λ). Then MLE reduces to solving the equation

λ = f −1(
1

N

N∑
i=1

ϕ(xi )).

▶ But for other exponential distributions we cannot compute
∑

x ϕ(x)p(x |λ)
as a function of λ. Instead we require an algorithm to minimize F [λ⃗] with

respect to λ⃗.

▶ F [λ⃗] is a convex function of λ⃗ (its Hessian ∂2F

∂λ⃗∂λ⃗
can be computed and

shown to be positive semi-definite using the Cauchy-Schwarz inequality).
Hence has only a single minimum which can be found by steepest descent,

or variants, using the gradient
∂F

∂λ⃗
.

▶ Unfortunately, at each iteration step, this requires computing the
expectation of the statistics

∑
x⃗ ϕ⃗(x⃗)p(x⃗ |λ⃗) which may not be possible (if

the distribution is defined over a graph with closed loops) and will need to
be approximated.



Convexity of F [λ⃗], Uniqueness of MLE, and Iterative Algorithms (2)

▶ Algorithm 1: Steepest Descent:

▶ λ⃗t+1 = λ⃗t −∆{
∑

x⃗ ϕ⃗(x⃗)p(x⃗ |λ⃗
t)− 1

N

∑N
i=1 ϕ⃗(x⃗i )}. Here ∆ is a ”time step”

constant.

▶ The continuous form of steepest descent is the differential equation
dλ⃗
dt

= − 1
N
∂F [λ⃗]

∂λ⃗
. We approximate dλ⃗

dt
by λ⃗t+1−λ⃗t

∆
we compute

1
N
∂F [λ⃗]

∂λ⃗
=

∑
x⃗ ϕ⃗(x⃗)p(x⃗ |λ⃗)−

1
N

∑N
i=1 ϕ⃗(x⃗i ). Convergence of ”differential

steepest descent” follow by dF
dt

= ∂F [λ⃗]

∂λ⃗

dλ⃗
dt

(the chain rule) which yields

dF
dt

= − ∂F [λ⃗]

∂λ⃗
· ∂F [λ⃗]

∂λ⃗
≤ 0. So the algorithm converges to the unique (by

convexity) value of λ where ∂F [λ⃗]

∂λ⃗
= 0. The choice of ∆ is important. If ∆

is too large, then the discrete equation may poorly approximate the
continuous version, and so convergence may not occur. But if ∆ is too
small, then the algorithm can be very slow.



Convexity of F [λ⃗], Uniqueness of MLE, and Iterative Algorithms (3)

▶ Algorithm 2: Generalized Iterative Scaling. This algorithm is similar to
steepest descent, but does not need a time step parameter ∆. This can be
derived from variational bounding and CCCP.

▶ λ⃗t+1 = λ⃗t − log
∑
x⃗

ϕ⃗(x⃗)p(x⃗ |λ⃗t) + log
1

N

N∑
i=1

ϕ⃗(x⃗i )

▶ Both algorithms are guaranteed to converge to the correct solution
independent of the starting point λ0 (provided ∆ is sufficiently small).

▶ Both algorithms require computing the quantity:
∑

x⃗ ϕ⃗(x⃗)p(x⃗ | λ⃗t) for
each iteration step, which is difficult to perform numerically for some
distributions. In that case, stochastic sampling methods like Markov Chain
Monte Carlo (MCMC) may be used. We will return to this issue in later
lectures.



Examples of learning Exponential Distributions: Gaussian Distribution

▶ The Gaussian distribution has a density function

p(x |λ⃗) = 1√
2πσ

e

−(x − µ)2

2σ2 .

Let its statistics be ϕ⃗(x) = (x , x2). Note: in the general case with N
dimensions we would have N-dimensional vectors x⃗ and statistics
ϕ⃗(x⃗) = (x⃗ , x⃗ x⃗T ).

▶ The model statistics have to be equal to the data statistics:

∑
x

p(x |λ⃗)(x , x2) =
1

N

N∑
i=1

(xi , x
2
i ).

Note: Really should be
∫
p(x⃗ |λ⃗)dx for Gaussian.

▶ Left-hand side of the equation:
∫
p(x |λ⃗)x = µ and

∫
p(x |λ⃗)x2 = µ2 + σ2.

Hence, µ̂ =
1

N

∑N
i=1 xi and µ̂

2 + σ̂2 =
1

N

∑N
i=1 x

2
i , so

σ̂2 =
1

N

∑N
i=1(xi − µ̂)2, which are the estimators for mean and variance.



Examples of learning Exponential Distributions: Letter Distribution
▶ Let x be a letter of the alphabet, x ∈ A = {a, b, c, d , · · · , y , z}. The

probability of each letter can be represented by an exponential distribution
p(x) = (1/Z(λ)) exp{λ⃗ · ϕ⃗(x) where ϕ⃗(x) = (δx,a, δx,b, · · · , δx,z), with
δx,a = 1 if x = a, δx,a = 0 otherwise. For instance, if the letter is c then

ϕ⃗(c) = (0, 0, 1, 0, 0, · · · , 0).
▶ For a given dataset of letters XN = {x1, · · · , xN}, the data statistics are:

1

N

∑N
i=1 ϕ⃗(xi ) =

(
#a’s

N
,
#b’s

N
, · · · , #z’s

N

)
, where #a’s =

∑N
i=1 δxi ,a is

the number of a’s in the dataset. The parameters of the distribution are
λ⃗ = (λa, λb, · · · , λz).

▶ Hence the exponential distribution representing the dataset is of form:

p(x |λ⃗) = 1

Z [λ⃗]
eλaδx,a+···+λzδx,z , where Z(λ⃗) = eλa + ...+ eλz .

▶ The expected value of the statistics can be computed to be:∑
x p(x |λ⃗)δx,a =

1

Z [λ⃗]
eλa . Hence the ML estimator, is obtained by solving

equations: eλa/(eλa + ...+ eλz ) =
#a’s

N
, ..., eλz /(eλa + ...+ eλz ) =

#z’s

N
.

Notice that there is an ambiguity in the λ’s (i.e. we can send
(λa, ..., λz) 7→ (λa + K , ..., λz + K) where K is a constant without altering
the solution. Hence we can resolve the ambiguity by setting
λ̂a = log#a’s− logN, λ̂b = log#b’s− logN, · · · , λ̂z = log#z’s− logN,

with Z [λ̂] =
#a’s

N
+

#b’s

N
+ · · ·+ #z’s

N
= 1.



Kullback-Leibler and Approximate Distributions

▶ Here is an alternative viewpoint on ML learning of distributions which
gives a deeper understanding. In particular, it shows that MLE gives the
”best” approximation even if it is not the correct model for the data.

▶ First we define the Kullback-Leibler (KL) divergence D(f (.)||p(.|λ⃗))
between distributions f (.) and p(.|λ) defined by:

D(f (.)||p(.|λ⃗)) =
∑

x⃗ f (x⃗) log
f (⃗x)

p(⃗x|λ⃗)
.

▶ KL has the property that D(f ||p) ≧ 0 ∀f , p D(f ||p) = 0, if, and

only if, f (x) = p(x⃗ |λ⃗). In general the larger D(f ||p) the bigger the
difference between f (.) and p(.). For small D(f ||p) it can be shown that
D(f ||p) ≈ (1/2)

∑
x(f (x)− p(x))2. (This involves setting

p(x) = f (x) + ϵ(x) and doing a Taylor series expansion of D(F ||p)).
▶ So, D(f ||p) is a measure of the similarity between f (x⃗) and p(x⃗ |λ⃗) (not

exactly, because it is not symmetric).

▶ We can write, D(f ||p) =
∑

x⃗ f (x⃗) log f (x⃗)−
∑

x⃗ f (x⃗) log p(x⃗ |λ⃗), where:∑
x⃗ f (x⃗) log f (x⃗) is independent of λ⃗ so minimizing D(f ||p) with respect

to λ⃗ corresponds to minimizing −
∑

x⃗ f (x⃗) log p(x⃗ |λ⃗).



Relation to ML

▶ Recall that MLE minimizes − 1
N

∑N
i=1 log p(xi |λ). Next, we define the

empirical distribution of the data {x⃗i : i = 1..N}. (This is a special case of
Parzen windows, later next lecture). f (x) = 1

N

∑N
i=1 I (x = xi ). Here

I (x = xi ) is the indicator function (= 1 if x = xi , = 0 otherwise).

▶ In this, minimizing the KL divergence corresponds to minimizing:

−
∑
x⃗

f (x⃗) log p(x⃗ |λ⃗) = −
∑
x⃗

1

N

N∑
i=1

I (x⃗ = x⃗i ) log p(x⃗ |λ⃗) = − 1

N

N∑
i=1

log p(x⃗i |λ⃗),

which is the same criterion as ML. This proves the claim:

▶ Claim: ML estimation of λ⃗ is equivalent to minimizing D(f ||p(x⃗ |λ⃗)) w.r.t.
λ⃗, where f (x⃗) is the empirical distribution of the data. Hence, we can
justify ML (for exponential distributions) as obtaining the distribution of

form
1

Z [λ⃗]
eλ⃗·ϕ(⃗x), which is the best approximation of the data. ML is

meaningful even if the model is not the correct one, but only an
approximation.



A Geometric Interpretation: Information Geometry

▶ Information geometry (Shun’ichi Amari, 1980) applies methods of

differential geometry to probability distributions. p(x⃗ |θ⃗) = eλ⃗·ψ⃗(⃗x)

Z [λ⃗]
defines

a sub-manifold of distributions, where λ⃗’s being are coordinates in the
manifold. Minimizing D(f ||p) w.r.t. λ⃗ is finding a distribution p closest to
f in the sub-manifold.

▶ This also motivates the idea of model pursuit as a way to obtain better
approximations to the true distribution: (1) Start by doing ML on an

exponential distribution with statistic ϕ⃗(x⃗). Get the best approximation.
(2) Get a better approximation by using more complex statistics, e.g,

ϕ⃗1(x⃗), ϕ⃗2(x⃗) with parameters λ⃗1, λ⃗2. (3) Proceed by using incrementally
complex statistics. (See Della Pietra et al, S-C Zhu et al.)

▶ From Amari’s perspective this corresponds to selecting submanifolds,
which are increasing closer to the data, by using better statistics. This will
be illustrated later by Shannon’s work on learning the probability of
sequences of letters.



Letters example, Shannon’s pursuit of letter sequences I

▶ Earlier, we discussed a dataset of single letters. In this subsection, let us
consider data which consists of pairs of letters:
XN = {(x1

1 , x
1
2 ), (x

2
1 , x

2
2 ), · · · , (xN

1 , x
N
2 )}. Let us define a first model which

assumes independence between letters: p(x1, x2) = p(x1)p(x2). The model

is exponential, as before: p(x) =
1

Z [x⃗ ]
eλ⃗ϕ⃗(x).

▶ This gives best fit – in the Kullback-Leibler sense – to data, using
statistics ϕ⃗1(x⃗1, x⃗2) = ϕ⃗(x⃗1) + ϕ⃗(x⃗2). But we can use a better statistic

ϕ⃗2(x1, x2) which considers the pairwise frequencies of letters:

ϕ⃗(x1, x2) =


δx1,aδx2,a δx1,aδx2,b · · · δx1,aδx2,z
δx1,bδx2,a δx1,bδx2,b · · · δx1,bδx2,z

· · ·
δx1,zδx2,a δx1,zδx2,b · · · δx1,zδx2,z


This second model, with ϕ⃗1(x⃗1, x⃗2), gives a better fit to the data the first
model because it is better at capturing the pairwise regularities which exist
in English. E.g, in English ”qu” is frequent but ”qz” is impossible.



Letters example, Shannon’s pursuit of letter sequences II

▶ Shannon – the founder of information theory and a pioneer of AI – tried to
learn a probability model of sequences of letters. His first model used only
the frequency of letters. This is a poor model for text sequences and
random sampling yields sequences which differ greatly from typical text
sequences in natural sentences. A probability model using the statistics of
letter pairs (see last slide) does better but is till unrealistic. Models with
third order and higher statistics give increasingly realistic text sequences.

▶ Shannon evaluated these probability models by comparing them to
humans. To do this he used the models P(x1, x2, .., xm) to predict the last
letter xm by sampling from P(xm|x1, ..., xm−1). He compared these
predictions to those made by human subjects. More specifically, he
compared the entropy of the human predictions to the entropy of the
model (see next slide).

▶ His approach cannot be extended to learn models of the long sequences
required by LLMs (GPTs). For letters, we have 26T statistics for
sequences of T letters and hence need to learn 26T parameters, which is
impossible. So LLMs have to use very different types of probability
distributions which will be descirbed later in the course.



Letters example, Shannon’s pursuit of letter sequences III

▶ The entropy of a distribution p(x⃗) is a measure of the randomness of the
distribution:

H[p] = −
∑
x

p(x⃗) log p(x⃗)

The most random distribution, with highest entropy, is the uniform
distribution. The distribution with lowest entropy is P(x⃗ ; x⃗0) = δ(x⃗ − x⃗0)
and has probability 1 for one state x⃗0 and probability 0 for the others.

▶ Entropy measures the information we expect to obtain by obtaining a
sample x⃗ from a distribution p(x⃗). WE get a lot of information from a
sample if the distribution is uniform but we get no information is the
distribution has zero entropy because we know what the sample will be
before we have seen it.

▶ Information Theory, developed by Shannon, says we should encode a signal
x⃗ by the negative logarithm of their probability − log p(x⃗). This means
that frequent signals (p(x⃗) big) have short codes and infrequent signals
(p(x⃗) small) have long codes. The expected code length is the entropy
−
∑

x⃗ p(x⃗) log p(x⃗). But this is a separate subject.



The Probability of the Data and the Entropy of the Distribution

▶ If we have learnt a distribution p(x⃗ |ˆ⃗λ) by ML from data {x⃗i : i = 1..N},
then we compute the probability of the data to be∏N

i=1 P(x⃗i |
ˆ⃗
λ) = exp

{
ˆ⃗
λ ·

∑N
i=1 ϕ⃗(x⃗i )− N logZ [

ˆ⃗
λ]
}

▶ The entropy of p(x⃗ |ˆ⃗λ) is −
∑

x⃗ p(x⃗ |
ˆ⃗
λ) log p(x⃗ |ˆ⃗λ) =

log Z⃗ [
ˆ⃗
λ]−

∑
x⃗
ˆ⃗
λϕ⃗(x⃗)p(x⃗ |ˆ⃗λ) = log Z⃗ [

ˆ⃗
λ]− 1

N

∑N
i=1

ˆ⃗
λϕ⃗(x⃗i ).

▶ The probability of the data, given the estimated parameterˆ⃗λ is∏N
i=1 p(x⃗i |⃗̂λ) = exp{−NH[p(x⃗ |ˆ⃗λ)]} and hence depends only on the

entropy of the models. If the entropy of p(x⃗ |ˆ⃗λ) is large then we cannot
predict the data well. But this depends on two issues: (i) is our model a
good fit to this data?, and (ii) is the data inherently unpredictable?

▶ Shannon measures the inherent unpredictability of the data by asking
humans to predict the next letters and computing the entropy of their
predictions. He compares this to predictions of models learnt with higher
order statistics. He show that the entropy of probability models decreases
when the order of the statistics increases since the models predict the data
better. His work is an example of model pursuit because he increases the
complexity of the statistics and shows that they predict the data better.



Maximum Entropy (1)

▶ An alternative perspective of learning, motivated by the question – how to
get to distributions from statistics? Where do exponential distributions
come from? E.T. Jaynes claimed (1957) that exponential distributions
come from a maximum entropy principle. Suppose we measure some
statistics ϕ⃗(x⃗), what distribution does it correspond to? This is an
ill-posed problem (the solution is not unique), so we have to make some
assumptions.

▶ We have data {x⃗1, · · · , x⃗N} and we have statistics ϕ⃗(x⃗) of the data. How

to justify a distribution like p(x) =
1

Z [λ⃗]
eλ⃗·ϕ(⃗x)? And how to justify using

ML to get λ⃗?

▶ Entropy was discovered, or invented, by physicists. It can be shown that
the entropy of a physical system always increases (with plausible
assumptions). This is called the Second Law of Thermodynamics. It
explains why a cup can break into many pieces (if you drop it), but a cup
can never be created by its pieces suddenly joining together.
Thermodynamics was discovered in the early 19th century, and shows that
it is impossible to design an engine that can create energy.



Maximum Entropy (2)

▶ Example 1 : Suppose x⃗ can take N states: α⃗1, α⃗2, ..., α⃗N . Let
p(x⃗ = α⃗1) = 1 p(x⃗ = α⃗j) = 0, j = 2, ...,N.

▶ Then the entropy of this distribution is zero, because we know that x has
to take value α⃗, before we observe it. The entropy is
−0 log 0 + (N − 1){1log1} = 0, because 0 log 0 = 0 and 1 log 1 = 0 (take
the limit of x log x as x 7→ 0 and x 7→ 1). No information is gained by
observing the sample, because we know it can only be α⃗.

▶ Example 2: p(x⃗ = α⃗j) =
1
N
, j = 1, ...,N. Then

H(p) = −N × 1
N
log( 1

N
) = logN. This is the maximum entropy

distribution. Note that the maximum entropy distribution is uniform – all
states x are equally likely.



Maximum Entropy (3)

▶ The Maximum Entropy Principle. Given statistics ϕ(x⃗) with observed

value ψ⃗ = 1
N

∑N
i=1 ϕ(x⃗i ), choose the distribution p(x⃗) to maximize the

entropy subject to constraints (Jaynes, 1957):

−
∑
x⃗

p(x⃗) log p(x⃗) + µ{
∑
x⃗

p(x⃗)− 1}+ λ⃗ · {
∑
x⃗

p(x⃗)ϕ(x⃗)− ψ⃗}

where µ, λ are lagrange multipliers which impose the constraints on p(x⃗):

▶ We differentiate with respect to p(x⃗), δ
δp(⃗x)

, and obtain:

− log p(x⃗)− 1 + µ+ λ⃗ · ϕ⃗(x⃗) = 0.

▶ This gives a solution of form p(x⃗ |λ⃗) = expλ⃗·ϕ⃗(⃗x)

Z [λ⃗]
, where the parameters

λ⃗,Z [λ⃗] are chosen to satisfy the constraints:∑
x⃗ p(x⃗) = 1,⇒ Z [λ⃗] =

∑
x⃗ exp

λ⃗·ϕ⃗(⃗x)∑
x⃗ p(x⃗)ϕ(x⃗) = ψ⃗,⇒ λ⃗ is chosen s.t.

∑
x⃗ p(x⃗ |λ⃗)ϕ(x⃗) = ψ⃗

▶ Hence the maximum entropy principle obtains exponential distributions
from statistics and estimates their parameters consistent with maximum
likelihood. So the maximum entropy principle is equivalent to choosing an
exponential family of distributions and estimating the λ parameters by
maximum likelihood.



Back to Vision

▶ S-C Zhu had a couple of papers in the 1990’s which used exponential
distributions. One paper (handout) modelled texture where the ststistics
were the histograms of Gabor filters and model pursuit was used to select
which Gabors to use (i.e. which statistics to use). This worked fairly well
for homogeneous texture (but simpler image-patch models by Efros and
Freeman were as effective).

▶ Another paper showed that the weak membrane model (the weak prior)
could be obtained from the measured statistics of the first order
derivatives of the image. This was conceptually very interesting. But it
also showed limitations of the weak membrane model since it did not
capture the statistics of the higher order derivatives (which are also very
similar between images).

▶ In both papers, learning the parameters of the exponential models required
using MCMC algorithms to compute the expected statistics of the models
in order to match them to the statistics of the data (because the models
were two dimensional). The Della Pietra paper (handout) also did model
pursuit but their application was language so they could use dynamic
programming algorithms for inference.
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