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Bayes Introduction

▶ This lecture introduces Bayes and Bayes Decision Theory

▶ Bayes Decision Theory

▶ Empirical Risk

▶ Critique of Bayes

▶ Bayes in the Big



Bayes decision theory

▶ Bayes decision theory (BDT) is a framework for making optimal decisions
in the presence of uncertainty. .

▶ The theory contains three ingredients: (I) A probability distribution
P(x , y) over the input x ∈ X and output y ∈ Y. (II) A set of decision
rules {α();α ∈ A} where α(x) ∈ Y. (III) A loss function L(α(x); y),
which is the cost of making decision α(x) if the real decision should be y .

▶ The risk is specified by the expected loss function
R(α) =

∑
x,y P(x , y)L(α(x), y).

▶ The optimal decision is Bayes rule α̂ = arg minα∈A R(α) minimizing the
risk yielding the Bayes risk minα R(α) = R(α̂) (Caveat).



Likelihoods, priors, and posteriors

▶ By basic probability theory we can re-express the joint distribution P(x , y)
in two different ways: (I) P(x , y) = P(x |y)P(y), where P(x |y) is the
conditional distribution of x conditioned on y . (II) Similarly
P(x , y) = P(y |x)P(x). By equating P(x |y)P(y) = P(y |x)P(x) we derive
Bayes Theorem P(y |x) = P(x |y)P(y)/P(x).

▶ The goal of BDP is to estimate y from x : (I) P(x |y) is the likelihood
function of y and specifies what we know about y given the observation x .
(II) P(y) specifies the prior knowledge of y independent of the
observation. (III) P(y |x) is the posterior distribution of y after making the
observation x , combining the likelihood function and the prior/

▶ Priors are used if they can be estimated objectively. Sometimes they are
criticized as subjective. We will return to this later.



Bayes Rule and special cases

▶ We can express the expected risk as
∑

x P(x)
∑

y P(y |x)L(α(x), y).
Hence the Bayes rule α̂(.) can be expressed as
α̂(x) = arg min

∑
y P(y |x)L(α(x), y).

▶ First special case. Suppose the loss function penalizes all errors equally
with  L(α(x), y) = −δ(y − α(x)), where δ() is the Dirac delta function,
and α̂(x) = arg maxy P(y |x). This is the maximum a posteriori (MAP)
estimate of y .

▶ Second special case, Suppose in addition that the prior P(y) is the
uniform distribution. In this case, α̂(x) = arg maxy P(x |y) which is the
maximum likelihood (ML) estimate of y .



Bayes rule for binary decisions

▶ The binary case y ∈ {−1, 1} illustrates the trade off between different
types of errors. We call y = 1 the target and y = −1 as the distractor.

▶ For a decision rule α(x), we define (x , y) to be a false positives if
α(x) = 1 and y = −1, We define (x , y) to be a false negative if
α(x) = −1 and y = 1.

▶ In other word, a false positive occurs if we predict the input x to be the
target when it is a distractor. A false negative occurs if the decision rule
predicts the signal to be a distractor but instead it is a target.

▶ This situation comes up frequently in practice for example if we are trying
to detect a disease. Ideally we would like a decision rule which is always
correct and has either true positive — α(x) = 1 and y = 1 – or true
negatives α(x) = −1 and y = −1. In practice we need to choose a loss
function that trades offs the false negatives with the false positives.



Bayes rule for binary decisions

▶ For binary decision problems y ∈ {±1}, the loss function is usually chosen
to pay no penalty if the correct decision is made (i.e., α(x) = y) but has a
penalty Fp for false positives, where y = −1 but α(x) = 1, and Fn for false
negatives, where y = 1 but α(x) = −1 is y = −1.

▶ It follows, see next slide, that we can express the Bayes rule in terms of a
log-likelihood ratio test log P(x|y=1)

P(x|y=−1)
> T , where T depends on the prior

p(y) and the loss function L(α(x), y).

▶ This is why Bayesian edge detection (previous lecture) reduces to
thresholding the log-likelihood ratio of the probabilities that the features
are generated by edges y = 1 or background y = −1.



Bayes rule (III)

▶ More specifically, the Bayes risk is R(α) =
∑

x P(x)
∑

y L(α(x), y)P(y |x).
Then we divide the data (x , y) into four sets:

▶ (1) the true positives {(x , y) : s.t. α(x) = y = 1};

▶ (2) the true negatives {(x , y) : s.t. α(x) = y = −1};

▶ (3) the false positives {(x , y) : s.t. α(x) = 1, y = −1};

▶ (4) the false negatives {(x , y) : s.t. α(x) = −1, y = 1}.

▶ These four cases correspond to loss function values
L(α(x) = 1, y = 1) = Tp, L(α(x) = −1, y = −1) = Tn,
L(α(x) = 1, y = −1) = Fp, L(α(x) = −1, y = 1) = Fn.

▶ Then the best decision rule α̂T (.) can be expressed as.

log
P(x |y = 1)

P(x |y = −1)
> log

Tn − Fp

Tp − Fn
+ log

P(y = −1)

P(y = 1)
.

▶ The intuition is that the evidence in the log-likelihood must be bigger than
our prior biases while taking into account the penalties paid for different
types of mistakes.



Bayes rule (IV)

The results on Bayesian edge detection and texture classification can be derived
from decision theory.

For Bayesian edge detection, the prior P(y) specify the probability that an
image patch contains an edge (empirically P(y = 1) ≈ 0.05 and
P(y = −1) ≈ 0.95). The prior probability that a pixel is an edge is very small.
If the loss function penalizes false positives and false negatives equally the best
decision rule is to estimate that every pixel is background, because this is
successful ninety five percent of the time. The loss function must be selected
so that failing to detect an edge is penalized much larger than misclassifying a
background pixel as an edge.

The loss function should be chosen to specify the cost of making different
types of mistakes. For texture classification, the variable y takes values in a set
Y, which is called a multiclass decision. The same theory applies to tasks for
which we need to make a set of related but nonlocal decisions.



Signal detection theory (I)

We now show that an important special case of signal detection theory (Green
& Swets, 1966) – often used as a framework to model how humans make
decisions when performing visual, auditory, and other tasks – can be obtained
as a special case of Bayes decision theory.

We consider the two class case, where y ∈ {±1}, and suppose that the
likelihood functions are specified by Gaussian distributions,
P(x |y) = 1√

2πσy
exp{−(x − µy )2/(2σ2

y )}, which differ by their means (µ1, µ−1)

and their variances (σ2
1 , σ

2
−1). The Bayes rule can be expressed in terms of the

log-likelihood ratio test:

α̂(x) = arg max
y

y{−(x−µ1)2/(2σ2
1)− log σ1 +(x−µ−1)2/(2σ2

−1)+log σ2−T}.



Signal detection theory (II)

▶ This decision rule requires determining whether the data point x is above
or below a quadratic polynomial curve in x . In the special case when the
standard deviations are identical σ2

1 = σ2
2 (so we drop the subscripts 1,−1),

the decision is based only on whether the data point x satisfies:

2x(µ1 − µ−1) + (µ2
1 − µ2

2) < 2Tσ2

▶ This special case, with σ2
1 = σ2

−1, is much studied in signal detection
theory (Green & Swets, 1966). It means that the decision is based on a

single function d ′ =
µ1−µ−1

σ
. This quantity is used to quantify human

performance for psychophysical tasks.

▶ Historically Signal Detection theory was one of the first scientific
applications of Bayes Decision Theory, which was developed during WW2
for applications like decrypting codes (e.g., the Enigma machine) or for
detecting the enemy using radar. There were big debates in that Statistics
community about the value of Bayes decision theory. One of the strongest
advocates for BDT was I.J. Good who have worked with Turing on
decypting codes in WW2 and who, like Turing, wrote papers about AI.



Learning the Probability Distributions

▶ Bayes Decision Theory assumes that we know the probability distributions
P(x |y) and P(y). Or, at least, the posterior distribution P(y |x).

▶ These distributions should be learnt from data X = {xi : i = 1, ...,N}.
BDT can be applied to learn these distributions P(y),P(x |y). For
example, to learn a probability distribution of x we select a parameterized
probability distribution P(x |λ) and then estimate the parameters λ.

▶ The ML estimate λ̂ is given by arg maxλ
∏N

i=1 P(xi |λ) or, equivalently, by

λ̂ = arg minλ(−1)
∑N

i=1 logP(xi |λ).

▶ We can also estimate λ̂ by MAP by introducing a prior P(α). This reduces
to λ̂ = arg minλ(−1){logP(λ) +

∑N
i=1 logP(xi |λ). If the number N of

training data is large then the prior will have little effect and can be
ignored. If N is small them the prior can sometimes have a big effect.



The Empirical Risk

▶ An alternative approach, used in much of machine learning, is to learn the
decision rule α(.) directly from the data DN = {(xi , yi ) : i = 1, ...,N}.
This differs from using the data to learn the probability distribution and
then computing the decision rule by minimizing the Bayes risk.

▶ This approximates R(α) =
∑

x,y L(α(x), y)P(x , y) by

Remp,Dn (α) = 1/N
∑N

i=1 L(α(xi ).yi ). In the limit as N 7→ ∞ the empirical
risk Remp,Dn 7→ R(α). This assumes that the {(xi , yi )} are identically
independently distributed (iid) samples from P(x , y). Then we estimate
α̂() by minimizing R,Dn (α).

▶ This is attractive because it avoids the need for learning the probability
distributions of the data. If the final goal is to find the best decision rule
then why not estimate it directly instead of first estimating the probability
distributions? Note: my view is that learning the likelihood and the prior
are better for more complex situations, as illustrated by domain transfer
for edge detection.



The Empirical Risk: PAC theory
▶ This approach was used by Support Vector Machines (SVMs) which was

the most popular ML used in computer vision before neural networks.
SVM argues that using the data to estimates probabilities is wasteful and
it is better to concentrate directly on the decision boundaries. For SVMs
this meant using the data to learn the decision boundaries, specified by the
support vectors.

▶ This approach comes with mathematical theories like Probably
Approximate Correct (PAC) which gives upper bounds of the amount of
data needed for the estimator to be close to arg minR(α) depending on the
capacity of the decision rule. This guarantees that, with high probability,
the decision rule will generalize to new data that the rule has not been
learn from, provided it comes from the same source (i.e. iid from P(x , y)).
But these theoretical bounds are not tight and rarely useful in practice.

▶ PAC theory, and more practical considerations, suggest that you need more
training data than the capacity of the set of classifiers A. But although
the capacity is an important conceptual concept it is very hard to measure,
expect for very simple decision rules. This is too complex to discuss here.
For some types of decision rules, like some types of deep networks, the
capacity is ”elastic” and the decision rules generalize well if there is only a
small amount of data and perform better when there is more (inconsistent
with the idea that capacity is fixed). For other classes of rules, the
capacity can be reduced by regularizing them,



The Empirical Risk and Learning Probabilities

▶ Suppose the decision rules can be expressed as α̂(x) = argmaxyP(y |x ;α)
where P(y |x ;α) is a family of probability distributions parameterized by α.
This corresponds to convolutional neural networks.

▶ If the loss function L(α(x), y) = − logP(y |x : α), where α is the
parameter of a distribution, then we obtain the loss used by convolutional
neural networks (CNNs). This can also be obtained from probabilistic
learning where we seek to learn the posterior distribution P(y |x) directly,
as will be discussed later in the course.

▶ Many (most) of the loss functions used to train CNNs relate directly to
BDT. E.g., CNNs for edge detection use loss functions to penalize false
negatives 9failure to detect an edge) for the same reasons they are used
for Bayesian edge detection.



The Limits of BDP

▶ BDT measure performance by average case. Why not be more ambitious
and measure it by worst case? Or characterize the stimuls space into
regions where the decision rule works well and regions where it does not?

▶ Average case can be problematic particularly if the datasets are baised as
datasets always are.

▶ Priors can be useful but can cause biases.

▶ All these issues will be discussed further later in the course.

▶ The key ideas of Bayes – generative distributions and priors – are very
important. BDT is a good start but is not nearly enough.
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