

Dictionaries – Mixtures of Gaussians

– Mini-Epitomes.

Alan Yuille JHU

Local Image Patches

- Analyze properties of local image patches.
- Get a lot of image patches.
- Apply techniques:
- (i) Dictionaries *k*-means.
- (ii) Mini-epitomes.

Extreme Sparsity <u>Matched Filters</u> Typo: drop second "argmax" in Set

Set of basis function: $\{b_i(x)\}$

Represent each image by one basis function only

$$E[\alpha] = \sum_{x} \left| I(x) - \sum_{i} \alpha_{i} b_{i}(x) \right|^{2} \text{ with constant only one } \alpha_{i} \neq 0$$

Algorithm estimate $\hat{\alpha} = \arg \min E[\alpha]$

Set
$$\hat{\alpha}_i = \arg \min \sum_x |I(x) - \alpha_i b_i(x)|^2 = \arg \min \sum_x I(x) b_i(x) \quad \longleftarrow \quad \sum_x \{b_i(x)\}^2 = 1$$

Choose $\hat{i} = \min_i \sum_x |I(x) - \hat{\alpha}_i b_i(x)|^2 \quad \longrightarrow \quad \text{Set} \quad \alpha_i = \hat{\alpha}_i$
 $\alpha_j = 0 \quad \text{otherwise}$

$$\sum \left\{ b_i(x) \right\}^2 = 1$$

Minimize
$$E[b,\alpha] = \frac{1}{|\Lambda|} \sum_{\mu \in \Lambda} \sum_{x} \left\{ I^{\mu}(x) - \sum_{i} \alpha_{i}^{\mu} b_{i}(x) \right\}^{2}$$

with constraint that only one α_i^{μ} is non-zero for each μ

How to minimize?

Convert this to *k*-means clustering Requires normalizing each image $I^{\mu}(x) \rightarrow \frac{I^{\mu}(x)}{\sqrt{\sum_{x} \{I^{\mu}(x)\}^{2}}}$ so that $\sum_{x} \{I^{\mu}(x)\}^{2} = 1$ Implies that the best $\alpha_{i}^{\mu} = 1$ Lecture 04-06

Supplement: k-means Algorithm

• Deterministic *k*-means

1. Initialize a partition $\{D_a^0: a = 1, ..., k\}$

- E.g. Randomly choose points x and put them into set, $D_1^0, D_2^0, ..., D_k^0$ so that all datapoints are in exactly one set
- 2. Compute the mean of each cluster D_a , $m_a = \frac{1}{w_a} \sum_{x \in D_a} x$
- 3. For i = 1, ..., N, compute $d_a(x_i) = |x_i m_a|^2$
 - Assign x_i to cluster D_a s.t. $a^* = \arg \min \{d_a(x_i), ..., d_k(x_i)\}$

4. Repeat steps 2 & 3 until converge

Supplement: k-means Algorithm Typo: P a normalized, D no subscript

- Soft version of k-means: The EM algorithm Typo: P a normalized, D
 - A 'softer' version of k-means the Expectation-Maximization (EM) algorithm.
 - Assign datapoints x_i to each cluster with probability (P_1, \dots, P_k)
 - 1. Initialize a partition
 - E.G. randomly choose k points as centres $m_1, m_2, ..., m_k$

2. For j = 1, ..., N

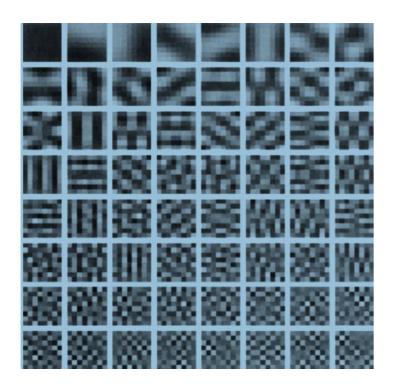
- Compute distances $d_a(x_i) = |x_i m_a|^2$
- Compute the probability that x_j belongs to D_a : $P_a(x_j) = \frac{1}{(2\pi\sigma_a^2)^{d/2}}e^{-\frac{1}{2\sigma_a^2}(x_j-m_a)^2}$ 3. Compute the mean and variance for each cluster

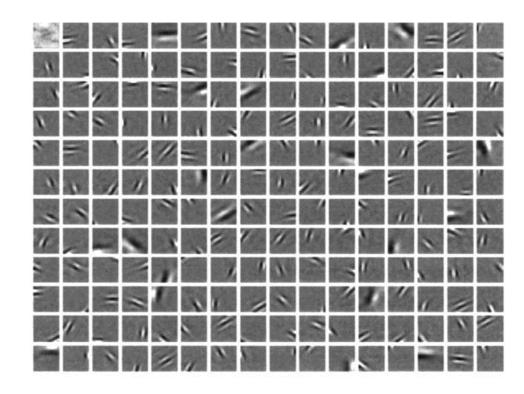
$$m_{a} = \frac{1}{|D_{a}|} \sum_{x \in D_{a}} x P_{a}(x) \qquad \sigma_{a}^{2} = \frac{1}{|D_{a}|} \sum_{x \in D_{a}} (x - m_{a})^{2} P_{a}(x)$$

4. Repeat steps 2 & 3 until convergence

Recall PCA & Sparsity

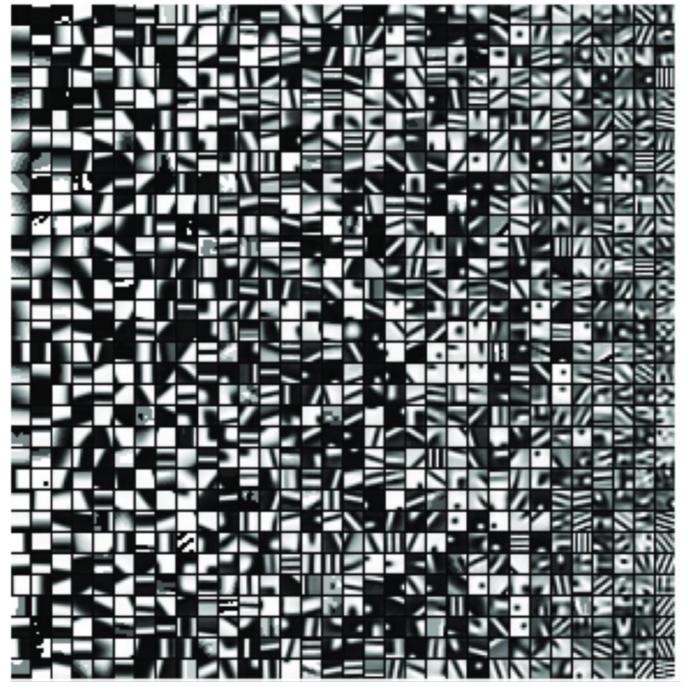
- Shift-invariance arises both in PCA and Sparsity.
- Are we wasting bases by encoding spatial translation?





Full Sparsity

- Dictionaries of patches:
- Cluster *k*-means.

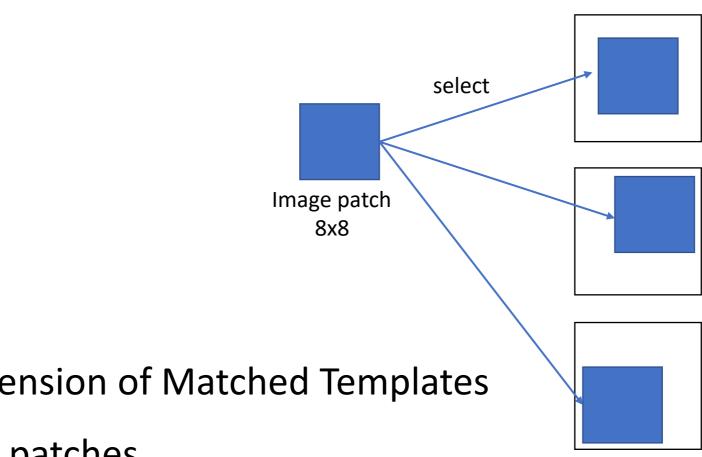


Modeling Shift

- A variants of image patches.
- •Mini-Epitomes (G. Papandreou et al. CVPR 2014)
- •An attempt to deal directly with shift-invariance.

Mini-Epitomes

12



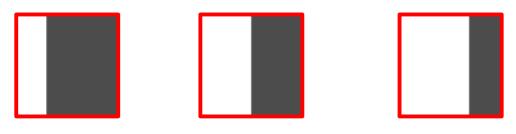
This is like an extension of Matched Templates

But with smarter patches

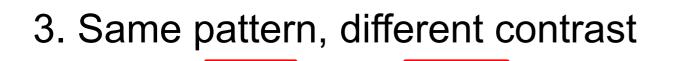
Can be learnt by the EM algorithm: extending k-means

Sources of Redundancy in Patch Dictionaries

1. Same pattern, different position

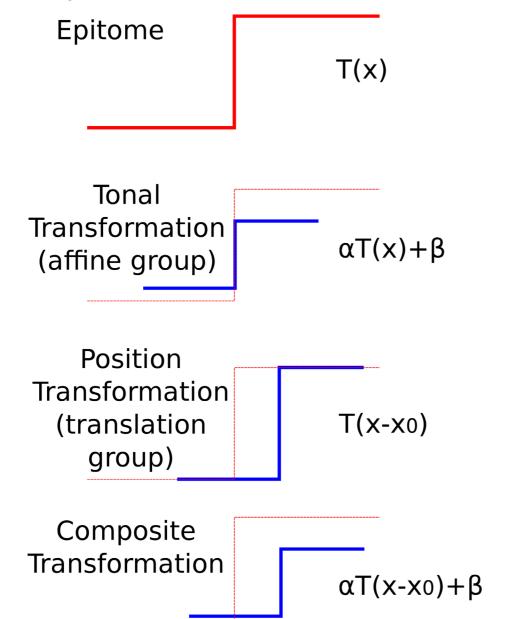


2. Same pattern, opposite polarity (x2 redundancy)



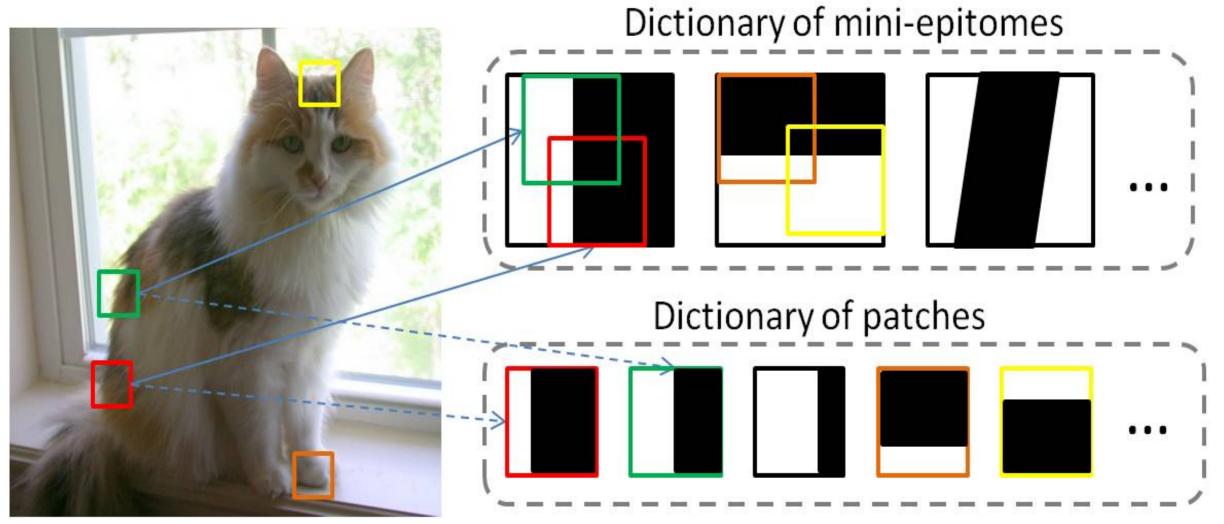
 \rightarrow Our work: Build less redundant epitomic dictionaries

The Epitome Data Structure



Epitomes: Jojic, Frey, Kannan, ICCV-03

Dictionary of Mini-Epitomes

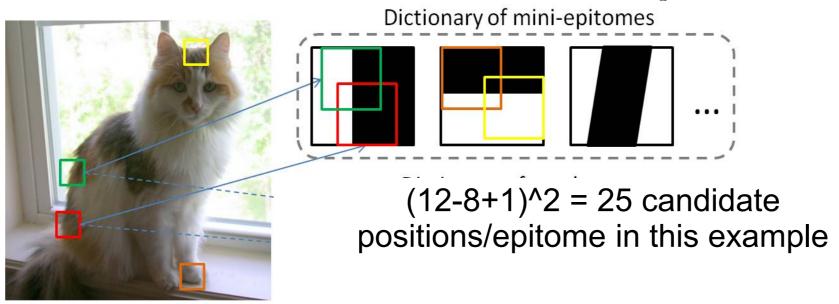


G. Papandreou, L.-C. Chen, A. Yuille (CVPR-14)

"Modeling Image Patches with a Generic Dictionary of Mini-Epitomes"

Epitomic Patch Matching

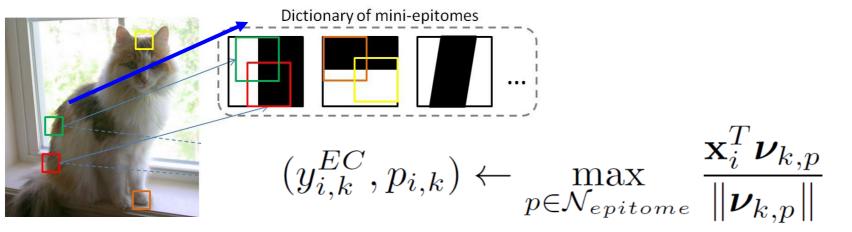
- 1. We have K mini-epitomes (say patch size is 8x8 pixels and mini-epitome size is 12x12 pixels).
- 2. For each patch \mathbf{X}_i in the image and each mini-epitome k = 1:K, find the patch at position p in the epitome which minimizes the reconstruction error (whitening omitted): $R^2(\mathbf{x}_i; k, p) = \|\mathbf{x}_i \alpha_i \mathbf{T}_p \boldsymbol{\mu}_k\|^2$



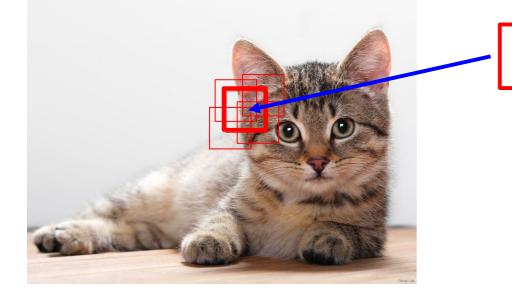
3. Algorithms: Exact search (GPU, <0.5 sec/image) or ANN or dynamic programming algorithm.

Epitomic Match vs. Max Pooling

1. Position search equivalent to epitomic convolution:



2. Epitomic convolution is an image-centric alternative to convolution followed by "max-pooling":

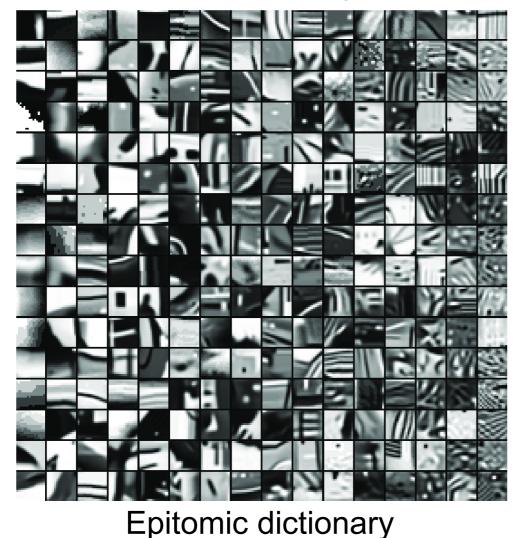


$$(y_{i,k}^{MP}, p_{i,k}) \leftarrow \max_{p \in \mathcal{N}_{image}} \mathbf{x}_{i+p}^T \boldsymbol{\mu}_k$$

* It is much easier to define image prob models based on EC than MP

* Evaluation in discr. tasks underway

A Generic Mini-Epitome Dictionary



Non-Epitomic dictionary 1024 elements (8x8)

256 mini-epitomes (16x16) 1024 elements Both trained on 10,000 Pascal images

Epitomic Dictionary Learning

Unsupervised training. Generative model:

- 1. Select mini-epitome k with prob $P(l_i = k) = \pi_k$
- 2. Select position p within epitome uniformly
- 3. Generate the patch \mathbf{X}_i (whitening not shown here):

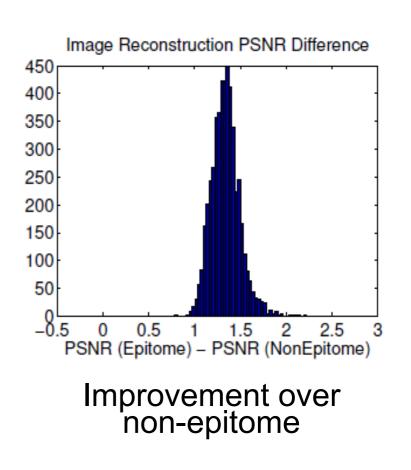
$$P(\mathbf{x}_i|l_i, p_i) = \mathcal{N}(\mathbf{x}_i; \alpha_i \mathbf{T}_{p_i} \boldsymbol{\mu}_{l_i}, \sigma^2 \mathbf{I})$$

 \rightarrow Max likelihood, hard EM – essentially epitomic adaptation of K-Means.

- → Faster convergence using diverse initialization of mini-epitomes by epitomic adaptation of K-Means++.
- \rightarrow Mini-batch K-Means for very large-scale (to try).

Evaluation on Image Reconstruction

Original image

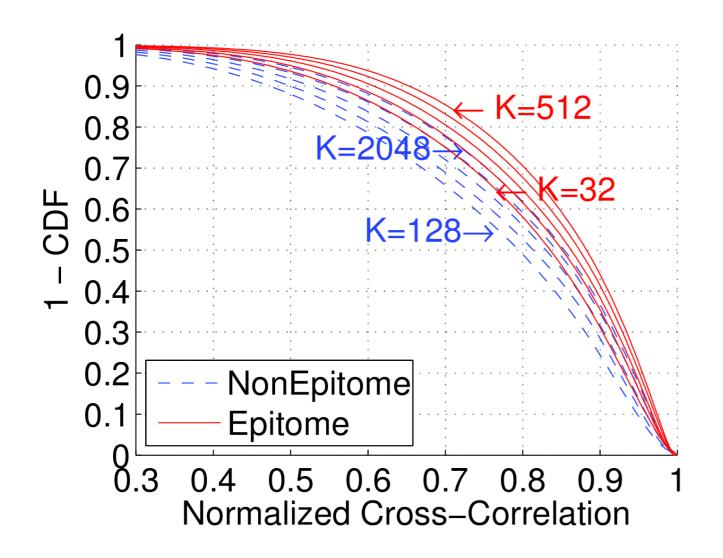


Epitome reconstr. (PSNR: 29.2 dB)

Universal dictionary?

- Can a limited number of patches, or mini-epitomes "accurately" model most image patches that appear in a large set of images?
- Accurate, means normalized cross-correlation of 0.8 or higher. Perceptually the patches look similar (image patch and closest dictionary element).
- What is the set of all possible 8x8 image patches?

Epitome Benefit in Reconstruction



1. Mini-Epitome dictionary with 64 elements =

Non-epitome dictionary with 2048 elements (8x better/ param)

2. NCC better than 0.8 for 70% of image patches