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Lecture 3: K-means, Mixtures of Gaussians, Contrast and Shifts

Lecture 3

▶ Matched Filters and Dictionaries.

▶ The K-means algorithm.

▶ Soft-coding: mixture of Gaussians with Expectation-Maximization (EM).

▶ Mixture of Von Mises Fisher.

▶ Mini-epitomes.
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Matched Filters (1)

▶ Suppose we have a function B⃗ and an input image patch I⃗p.

▶ We want to find the best fit of the filter to the image by scaling the
function by a and adding a background term b.

▶ This gives a transformation B⃗ 7→ aB⃗ + be⃗, where e⃗ = (1/
√
N)(1, ..., 1). B⃗

and e⃗ are normalized so that B⃗ · B⃗ = e⃗ · e⃗ = 1. If B⃗ is a derivative filter
then, by definition, B⃗ · e⃗ = 0.

▶ The goal is to find the best scaling a and background b to minimize the
match:

E(a, b) = |I⃗p − aB⃗ − be⃗|2.
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Matched Filters (2)

▶ The solution â, b̂ is found by setting the derivatives of E with respect to a
and b, enforcing that B⃗ and e⃗ are normalized, yielding:

â = B⃗ · Ip, b̂ = e⃗ · I⃗p.

.

▶ The estimated scaling â is the dot product of the function with the image.
The estimated background b̂ is the mean value of the image. The
minimized energy E(â, b̂) is a measure of how well the filter ”matches”
the input image.
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Dictionaries of Functions

▶ Matched filters leads naturally to the idea of having a“dictionary” of
functions {B⃗µ : µ ∈ Λ}, where different functions B⃗µ are tuned to
different types of image patches.

▶ An image patch is encoded by the function that best matches it, after
estimating the scaling and the background. The bigger the dot product
B⃗ · I⃗ the better the function B⃗ matches the image patch I⃗p.

▶ This relates to popular methods of quantizing stimuli, e.g., the feature
vectors of a neural network, into dictionaries of tokens. See later in the
course.

▶ Mote that matched filters are an extreme case of sparsity. An image patch
is represented by a single function while for l1 sparsity we allows a linear
combination of functions.
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K-means (1)

▶ A popular strategy for learning a dictionary of matched filters (functions),
is by using the K -means algorithm. This is a classic clustering algorithm.
As we will show, it related to mixtures of Gaussians and the EM algorithm.

▶ For simplicity, we will set a = 1 and b = 0 (contrast and background can
be reintroduced later) which gives a dictionary for a set of images
{In : n = 1, ...,N}. We seek a set of functions which minimize

E({Bk}; {In}) =
∑N

n=1 mink |I⃗n − B⃗k |2.
▶ We can find the dictionary {Bk} by the K-means algorithm. This is not

guaranteed to find the global minimum of E({Bk}; {In}) and hence the
best dictionary. But there are efficient algorithms like k++ for
initialization.

▶ K-means is a clustering algorithm because it clusters data into different
subgroups (one function for each subgroup).
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K-means (2)

▶ The input to K-means is a set f unlabeled data: D = {x1, ..., xn}. The goal
is to decompose it into disjoint classes w1, ...,wk where k is known. The
basic assumption is that the data D is clustered round (unknown) mean
values m1, ...,mk .

▶ We defines an association variable Via. Via = 1 if datapoint xi is
associated to mean ma and Via = 0 otherwise. we have the constraint∑

a Via = 1 for all i (i.e. each datapoint is assigned to a single mean).

▶ This gives a decomposition of the data. Da = {i : Via = 1} is the set of
datapoints associated to mean ma. The set D =

⋃
a Da is the set of all

datapoints. Da

⋂
Db = ϕ for all a ̸= b, where ϕ is the empty set.
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K-means (3)

▶ We defines a goodness of fit:

E({V }, {m}) =
n∑

i=1

k∑
a=1

Via(xi −ma)
2 =

k∑
a=1

∑
x∈Da

(x −ma)
2 (1)

▶ The goal of the k-means algorithm is to minimize E({V }, {m}) with
respect to {V } and {m}. E(., .) is a non-convex function and no known
algorithm can find its global miminum. But k-means is guaranteed to
converge to a local minimum.
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K-means (4)

▶ The k-means algorithm

▶ 1. Initialize a partition {D0
a : a = 1 to k} of the data. (I.e. randomly

partition the datapoints – or use K++).

▶ 2. Compute the mean of each cluster Da, ma =
1

|Da|
∑

x∈Da
x .

▶ 3. For i=1 to n, compute da(xi ) = |xi −ma|2. Assign xi to cluster Da∗ s.t.
a∗ = argmin{da(xi ), ..., dk(xi )}

▶ 4. Repeat steps 2 & 3 until convergence.

▶ This will converge to a minimum of the energy function because steps 2
and 3 each decrease the energy function (or stop if the algorithm is at a
local minimum). This will divide the space into disjoint regions.

▶ k-means can be formulated in terms of the assignment variable. At step 2,
ma =

1∑
i Via

∑
i Viaxi . At step 3. Via = 1 if |xi −ma|2 = minb |xi −mb|2

and Via = 0 otherwise.
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Soft K-means. Mixture of Gaussians. (1)

▶ Here is ”softer” version of k-means (a special case of the EM) algorithm.
Assign a datapoint x i to each cluster with probability (P1, . . . ,Pk)

▶ 1. Initialize a partition of the datapoints.

▶ 2. For j=1 to n. Compute the probability that xj belongs to ωa.

P(ωa|xj) =
exp− 1

2σ2 (xj−ma)
2∑

b exp− 1
2σ2 (xj−mb)

2 , where P(ωa|xj) = P(xj |ωa)P(ωa)/P(xj).

▶ 3. Compute the mean for each cluster: ma =
∑

j xjP(ωa|xj)
▶ 4 Repeat steps 2 & 3 until convergence.

▶ In this version the hard-assign variable Via is replaced by a soft-assign
variable P(ωa|xi ). Observe that

∑
a P(ωa|xj) = 1. The ”softness” is

controlled by σ2. In the limit, as σ2 7→ 0, the distribution P(ωa|xj)
becomes binary valued, and soft k-means is the same as k-means.
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Soft K-means. Mixture of Gaussians. (2)

▶ Soft k-means can be reformulated in terms of mixtures of Gaussians and
the Expectation-Maximization (EM) algorithm.

▶ This assumes that the data is generated by a mixture of Gaussian
distributions with means {m} and variance σ2I.

P(x |{V }, {m}) = 1
Z
exp{−

∑
ia Via

||xi−ma||2
σ2 }.

▶ This is equivalent to a mixture of Gaussians:
P(x |V ,m) = N (x :

∑
a Viama, σ

2), where the variable V identifies the
mixture component (i.e. Via = 1 if datapoint xi was generated by mixture
a).

▶ We must impose a prior P({V }) on the assignment variable V . It is
natural to choose a uniform distribution P(V ) = 1/Z , where Z is the
number of possible assignments of the datapoints to the means.
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Soft K-means. Mixture of Gaussians. (3)

▶ This gives distributions P(x , {V }|{m}) = P(x |{V }, {m})P({V }) which
enables us to use the EM algorithm which estimates the mean variables
{m} despite the presence of unknown/missing/latent variables {V }.

▶ The EM algorithm can be applied to any problem where there are
quantities to be estimated but also missing/latent variables. It corresponds
to minimizing a free energy function, which is non-convex so global
convergence cannot be guaranteed. Deriving the soft k-means algorithm
by applying the EM algorithm to P(x |V ,m) is left as an exercise for the
reader.

▶ Soft k-means can be extended in several ways. The simplest is to treat the
covariances of the Gaussians as additional variables to be estimated.
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Mixture of Von Mises Fisher

▶ An important alternative, which arises in neural network models, is if we
require that the data has unit norm |xi | = 1, ∀i (i.e. lies on the unit
sphere). This can be used to avoid needing to estimate the scaling and

background by setting b = 0 and normalize the images by I (x) 7→ I (x)
|I (x)| (so

that I (x) has unit norm).

▶ The Von Mises Fisher distribution is P(x |k, λk) =
exp{λkmk ·x}

Z(λk )
, where

x | = |mk | = 1, and σk is a positive constant. The mixture of Von Mises
Fisher is P(x |{λk}) =

∑
k P(x |k, {λk})P(k).

▶ Von Mises Fisher is closely related to the Gaussian distribution (with

spherical covariance). The exponent of this Gaussian is − (x−mk )
2

2σ2 and if we

impose |x | = |mk | = 1 then this becomes (x·mk−1)

σ2 and by identifying λk

with 1/σ2
k we recover Von Mises Fisher. Von Mises Fisher is the a

Gaussian defined of data that lies on the unit sphere.
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Mini Epitomes (1)

▶ This is another way to learn a dictionary with a more complicated
generative model with more hidden variables.. It is motivated by the fact
that images are shift-invariant (unless they are carefully aligned). Recall,
see powerpoints, that we want invariance to I (x) 7→ aI (x − x0) + b, where
x0 is a shift.

▶ Let {xi}Ni=1 be a set of possibly overlapping patches of size h × w pixels
cropped from a large collection of images.

▶ The dictionary comprises K mini-epitomes {µk}Kk=1 of size H×W , with
H ≥ h and W ≥ w . The length of the vectorized patches and epitomes is
then d = h · w and D = H ·W , respectively.

▶ We approximate each image patch xi with its best match in the dictionary
by searching over the Np = hp × wp (with hp = H − h + 1,
wp = W − w + 1) distinct sub-patches of size h × w fully contained in
each mini-epitome. Typical sizes we employ are 8× 8 for patches and
16× 16 for mini-epitomes, implying that each mini-epitome can generate
Np = 9 · 9 = 81 patches of size 8× 8.
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Mini Epitomes (2)

▶ We model the appearance of image patches using a Gaussian mixture
model (GMM). We employ a generative model in which we activate one of
the image epitomes µk with probability P(li = k) = πk , then crop an
h × w sub-patch from it by selecting the position pi = (xi , yi ) of its
top-left corner uniformly at random from any of the Np valid positions.

▶ We assume that an image patch xi is then conditionally generated from a
multivariate Gaussian distribution
P(xi |zi , θ) = N (xi ;αiTpiµli + βi1, c

2
i Σ0).

▶ The label/position latent variable vector zi = (li , xi , yi ) controls the
Gaussian mean via νzi = Tpiµli . Here Tpi is a d × D projection matrix of
zeros and ones which crops the sub-patch at position pi = (xi , yi ) of a
mini-epitome. The scalars αi and βi determine an affine mapping on the
appearance vector and account for some photometric variability and 1 is
the all-ones d × 1 vector. Here x̄ denotes the patch mean value and λ is a
small regularization constant (we use λ = d for image values between 0
and 255).
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Mini Epitomes (3)

▶ Conceptually we formulate learning multi-epitomes as an EM problem. We
specify a distribution P(x |z , θ) where x is an image patch, θ is the
parameters we want to learn (the means of the mini-epitomes) and z are
the latent variables, specifying which mini-epitome generated x and which
location in the mini-epitome). We specify a uniform prior p(z) and then
apply EM. Some simplifications are made as described below.

▶ We choose πk = 1/K and fix the d × d covariance matrix
Σ−1

0 = DTD+ ϵI, where D is the gradient operator computing the x− and
y− derivatives of the h × w patch and ϵ is a small constant.

▶ To match a patch xi to the dictionary, we seek the mini-epitome label and
position zi = (li , xi , yi ), as well as the photometric correction parameters
(αi , βi ) that maximize the probability, or equivalently minimize the
squared reconstruction error (note that D1 = 0).

▶ The squared reconstruction error is:
R2(xi ; k, p) =

1
c2i

(
∥D (xi − αiTpµk)∥2 + λ(|αi | − 1)2

)
, where the last

regularization term discourages matches between patches and
mini-epitomes whose contrast widely differs.
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Mini Epitomes (4)

▶ We can compute in closed form for each candidate match νzi = Tpiµli in

the dictionary the optimal β̂i = x̄i − α̂i ν̄zi and α̂i =
x̃Ti ν̃zi ±λ

ν̃T
zi
ν̃zi +λ

, where

x̃i = Dxi and ν̃zi = Dνzi are the whitened patches.

▶ The sign in the nominator is positive if x̃Ti ν̃zi ≥ 0 and negative otherwise.
Having computed the best photometric correction parameters, we can
evaluate the reconstruction error R2(xi ; k, p).

▶ In order to learn the parameters we use the EM algorithm.Given a large
training set of unlabeled image patches {xi}Ni=1, our goal is to learn the
maximum likelihood model parameters θ = ({πk , µk}Kk=1) for the epitomic
GMM model.. As is standard with Gaussian mixture model learning, we
employ the EM algorithm and maximize the expected complete
log-likelihood.

▶ The loglikelihood is
L(θ) =

∑N
i=1

∑K
k=1

∑
p∈P γi (k, p) · log

(
πkN

(
xi ;αiTpµk + βi1c

2
i Σ0

))
,

where P is the set of valid positions in the epitome.
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Mini Epitomes (5)

▶ In the E-step, we compute the assignment of each patch to the dictionary,
given the current model parameter values. We use the hard assignment
version of EM and set γi (k, p) = 1 if the i-th patch best matches in the
p-th position in the k-th mini-epitome and 0 otherwise.

▶ In the M-step, we update each of the K mini-epitomes µk by(∑
i,p γi (k, p)

α2
i

c2i
TT

p Σ
−1
0 Tp

)
µk =

∑
i,p γi (k, p)

αi

c2i
TT

p Σ
−1
0 (xi − x̄i1).

▶ See powerpoints for the results.
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Lecture 4

▶ The Expectation-Maximization Algorithm

▶ Super-pixels: Generative versus Affinities
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The EM Algorithm (1)

▶ The EM algorithm is a way to estimate parameters θ of a model if some
variables x can be observed, but others h are hidden/latent/missing (terms
differ depending on the research community).

▶ A classic paper (Dempster, Laird, and Rubin 1977) showed that EM was a
general way to formulate problems of this type (many existing algorithms
were special cases of EM). Special cases, not known to Dempster et al.,,
included Hidden Markov Models (HMMs) and the Boltzmann Machine
(BM).

▶ Suppose we have data x which is generated by a probabilistic model
P(x |h, θ) with a prior p(h) for the hidden variables h. This gives a
distribution p(x , h|θ) from which we can compute the marginal
distribution p(x |θ) =

∑
h p(x , h|θ).

▶ The goal is to estimate θ̂ = argmaxP(x |θ) (i.e. the maximum likelihood
estimate of θ). This can be formulated in terms of minimizing
− log p(x |θ).
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The EM Algorithm (2)

▶ To obtain EM we introduce a new variable q(h) which is a distribution
over the hidden variables. We define a free energy function
F (θ, q) = − log p(x |θ) +

∑
h q(h) log

q(h)
p(h|x,θ) . The second term is the

Kullback-Leibler divergence, which has the property that it is non-negative
and is zero only if q(h) = p(h|x , θ). This implies that minimizing F (θ, q)
with respect to θ and q is equivalent to minimizing − log p(x |θ) with
respect to θ (by setting q(h) = p(h|x , θ)).

▶ The EM algorithm consists of minimizing F (θ, q) with respect to θ and
q(.) alternatively. (These correspond to the two steps of the k-means
algorithm.) The algorithm is specified most simply by re-expressing
F (θ, q) =

∑
h q(h) log q(h)−

∑
h q(h) log p(h, x |θ) (which exploits

p(h, x |θ) = p(h|x , θ)p(x |θ and
∑

h q(h) log p(x |θ) = log p(x |θ).
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The EM Algorithm (3)

▶ The EM algorithm starts with an initialization. Then repeating the two
staps: (1) Fix θ and estimate q̂(.) by p(h|x , θ), which requires computing
P(h, x |θ)/p(x |θ). (2) Fix q(.) and estimate
θ̂ = argmin | −

∑
h q(h) log p(h, x |θ).

▶ Step 1 minimizes F (θ, q) with respect to q and Step 2 minimizes F (θ, q)
with respect to θ. Hence each step is guaranteed to reduce the free energy
and hence the algorithm converges to a minimum of the free energy. The
free energy is a non-convex function.

▶ We typically we need a good initialization to ensure that the EM algorithm
obtains a good result (i.e. results in a solution which is close to the global
minimum). A good initialization often requires studying the problem being
addressed.
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The EM Algorithm (4)

▶ Dempster et al. did not formulate EM in terms of minimizing a free
energy. This formulation was due to Hathaway (Statistics community) and
Hinton and Neal (neural network community).

▶ The free energy formulation is better because it enables many variants and
approximations (e.g., do iterations of steepest descent with respect to q(.)
or θ, restrict q(.) to take a specific form – like a factorizable distribution –
to make the E and M steps possible. Note: for many problems it is hard to
compute the E and M steps (it is easy for mixtures of Gaussians).
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The EM Algorithm (5)

▶ Here is another variant. Suppose we have p(θ|D) =
∑

h p(θ, h|D), where
D is the data. Introduce a distribution q(h) and define a free energy

F (θ, q) = − log p(θ|D) +
∑

h q(h) log
q(h)

p(h|θ,D)

▶ Then, similar to previous slide, we minimize with respect to q(h) and θ
alternatively. This gives two steps: (1) Fix qt , set
θt+1 = argminθ{−

∑
h q(h) log p(h, θ|D)}. (2). Fix θt , set

qt+1(h) = p(h|θt ,D). Initialize and iterate both steps until convergence.
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The EM Algorithm (6)

▶ Another variant (similar to k-means) is where we have data
{xn : n = 1, ...,N} generated by a distribution p(xn|hn, θ), where the
hidden variables hn are different for each n (this is the typically case). We
introduce distributions qn(hn). The goal is to minimize the negative
log-likelihood of all the data −

∑N
n=1 log p(xn|θ), where

p(xn|θ) =
∑

hn
(xn, hn|θ).

▶ We define a free energy
F (θ, {qn()}) = −

∑N
n=1 log p(xn|θ) +

∑N
n=1 qn(hn) log

qn(hn)
p(hn|xn,θ) . The EM

algorithm consists of minimizing F (., ) with respect to {qn()} and θ
alternatively, and yield steps similar to those on the previous slides.
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The EM Algorithm (7)

▶ Some general comments. The free energy F (θ, {qn()}) is not a convex
function of θ, {q} so the EM algorithm is not guaranteed to converge to
the global minimum. You can, however, put extra constraints on the
problem which enables proofs of convergence by finding initializations
which are guaranteed to lie within the domain of attraction of the global
minimum.

▶ For k-means clustering, the K++ algorithm (handout) is a good way to
initialize k-means algorithms. Otherwise try random initializations and
select the one which converges to the lowest possible minimum. Or, for
images, use affinity measures (see next few sides) to assign similar images
to the same clusters.
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