

Jiajun Wu MIT, Stanford

Recognition

Recognition

3 DRAW THE FACE

DRAW THE HAIR

Interpretation

Recognition

3 DRAW THE FACE

DRAW THE HAIR

Interpretation

Q: Are there an equal number of large things and metal spheres?

Reasoning

Recognition

3 DRAW THE FACE

Interpretation

DRAW THE HAIR

Reasoning

Q: Are there an equal number of large things and metal spheres?

Generation

- What can we learn from this video?
 - 3D object shapes (geometry)

- What can we learn from this video?
 - 3D object shapes (geometry)
 - Object properties (physics)
 - Masses / coefficients of frictions

- What can we learn from this video?
 - 3D object shapes (geometry)
 - Object properties (physics)
 - Masses / coefficients of frictions
 - Physical events (interaction)

collisions

rolling

- What can we learn from this video?
 - 3D object shapes (geometry)
 - Object properties (physics)
 - Masses / coefficients of frictions
 - Physical events (interaction)

collisions

rolling

• Humans recover rich information from this short video.

- What can we learn from this video?
 - 3D object shapes (geometry)
 - Object properties (physics)
 - Masses / coefficients of frictions
 - Physical events (interaction)

collisions

rolling

- Humans recover rich information from this short video.
- Generalization: Humans easily answer questions like
 - What will happen next?
 - What if ... ?
 - How to ... ?

Causal Models for Vision

- Helmholtz. Treatise on Physiological Optics. 1867.
- Pearl. Causality. 2000.
- Carey. The Origin of Concepts. 2009.
- Yuille and Kersten. Vision as Bayesian inference: analysis by synthesis? Trends in Cognitive Science, 2006.

Image (t-1)

Image (t-1)

- Object Intrinsics
 - Geometry
 - Physical properties
- Object Extrinsics
 - Position
 - Velocity
- Scene Descriptions
 - Lighting
 - Camera parameters

- Object Intrinsics
 - Geometry
 - Physical properties
- Object Extrinsics
 - Position
 - Velocity
- Scene Descriptions
 - Lighting
 - Camera parameters

Physical World Representations are Universal

Visual observation

Visual observation

Physical World Representations are Universal

World states

Visual observation

Approach I: Graphical Models

- Classical Estimation and Control, Graphical Models (HMMs, Bayes Nets)
 - **Pro:** Optimized for certain inference and learning algorithms
 - **Con:** Limited expressiveness

Approach I: Graphical Models, Simulation Engines

- Classical Estimation and Control, Graphical Models (HMMs, Bayes Nets)
 - **Pro:** Optimized for certain inference and learning algorithms
 - **Con:** Limited expressiveness
- Simulation (Graphics/Physics) Engines, Probabilistic Programs
 - **Pro:** Flexible, rich representations
 - **Con:** Lacking efficient, general-purpose inference and learning algorithms

PhysNet

Modeling actions with deep networks

Learning to poke by poking, NIPS'16

Learning to fly by crashing, IROS'17

Leveraging Causal Structure to Combine the Best of Both

Leveraging Causal Structure to Combine the Best of Both

Key Idea: Conditional Independence

Provides guidance on combining neural networks with simulation engines.

- When and where to use simulation engines vs. neural networks?
- What training targets to use for neural networks?
- What intermediate representations to use in the neural networks?
- What training data to use for neural nets?

- Single Object
 - 3D Shape [NIPS'17]
 - Intrinsic Images [NIPS'17]

- Single Object
 - 3D Shape [NIPS'17]
 - Intrinsic Images [NIPS'17]
- Static Scene
 - Scene de-rendering [CVPR'17]

Outline

Goal: Single Image 3D Reconstruction

Current Approaches

- Reconstruction with neural nets
 - 3D-R2N2 [ECCV'16]
 - TL-Network [ECCV'16]
 - HSP [3DV'17]
 - ...

Current Approaches

- Reconstruction with neural nets
 - 3D-R2N2 [ECCV'16]
 - TL-Network [ECCV'16]
 - HSP [3DV'17]
 - ...
- Reprojection consistency
 - Unsupervised Learning of 3D Structure from Images [NIPS'16]
 - Perspective Transformer Net [NIPS'16]
 - DRC [CVPR'17]
 - ...

World state Inverse graphics Graphics Image

2.5D Sketches as an Intermediate Representation

(a) Images

2.5D Sketches as an Intermediate Representation

(a) Images

Inquiry had to do with feature-based recognition, how to separate figure from ground, how to extract and interpret a 'form' or 'figure', how much analysis could be done in a data-driven or bottom-up way, and how much needed top-down influences.

Marr. Vision. 1980

2.5D Sketches as an Intermediate Representation

(a) Images

Inquiry had to do with feature-based recognition, how to separate figure from ground, how to extract and interpret a 'form' or 'figure', how much analysis could be done in a data-driven or bottom-up way, and how much needed top-down influences.

All this type of thinking was dramatically swept away by the idea of the 2.5D sketch.

Marr. Vision. 1980

MarrNet : 3D Reconstruction via 2.5D Sketches

Wu*, Wang*, Xue, Sun, Freeman, Tenenbaum. NIPS'17

MarrNet : 3D Reconstruction via 2.5D Sketches

Wu*, Wang*, Xue, Sun, Freeman, Tenenbaum. NIPS'17

Results on ShapeNet

MarrNet : 3D Reconstruction via 2.5D Sketches

Wu*, Wang*, Xue, Sun, Freeman, Tenenbaum. NIPS'17

MarrNet : 3D Reconstruction via 2.5D Sketches

Wu*, Wang*, Xue, Sun, Freeman, Tenenbaum. NIPS'17

Comparisons on PASCAL 3D+

Comparisons on PASCAL 3D+

R			
		FR	
Images	Ground truth	DRC	MarrNet

Methods	loU
DRC [CVPR '17]	0.34
MarrNet	0.38

Intersection over Union (IoU)

Comparisons on PASCAL 3D+

Images Ground truth DRC MarrNet Images Ground truth DRC MarrNet						Method		7 7
Intersection of MarrNet 74 Thages Ground truth DRC MarrNet MarrNet 1000000000000000000000000000000000000	T	17.1		90	60	MarrNe	t	J
Images Ground truth DRC MarrNet 74 MarrNet 74 MarrNet 74 Browner Browner						Inters	ection o	ver
Images Ground truth DRC S0 MarrNet 74 GT 83 MarrNet 9 Images Ground truth DRC	1 th	44	Y Y	// 1/	111		DRC	N
Images Ground truth DRC MarrNet						DKC MarrNet	50 74	
Images Ground truth DRC MarrNet Percentages of unthe			E			GT	83	
Images Ground truth DRC MarrNet	Alest		W. 44	<u> </u>	H	Percenta the left	ges of u	iser ch
	Images	Ground truth	DRC	Mar	rNet			

Methods	loU
DRC [CVPR '17]	0.34
MarrNet	0.38
Intersection over U	Jnion (IoU)

	DRC	MarrNet	GT	
DRC	50	26	17	
IarrNet	74	50	42	
GT	83	58	50	

rs that preferred to the top one

Results on PASCAL 3D+

Results on IKEA

Self-Supervised Intrinsic Image Decomposition

Janner, Wu, Kulkarni, Yildirim, Tenenbaum. NIPS'17

Self-Supervised Intrinsic Image Decomposition

Janner, Wu, Kulkarni, Yildirim, Tenenbaum. NIPS'17

Results on Intrinsic Image Decomposition

- Single Object
 - 3D Shape [NIPS'17]
 - Intrinsic Images [NIPS'17]
- Static Scene
 - Scene de-rendering [CVPR'17]

Outline

From Objects to Scenes (Scene De -rendering)

From Objects to Scenes (Scene De -rendering)

From Objects to Scenes (Scene De -rendering)

Generalized Encoding-Decoding Structure

(a) A standard autoencoder

(b) A generalized autoencoder

Scene De-rendering

Model Details

Learning to See Physics via Visual De -animation

Wu, Lu, Kohli, Freeman, Tenenbaum. NIPS'17

Learning to See Physics via Visual De -animation

Learning to See Physics via Visual De -animation

Frame t Frame t+2 Frame t+5 Frame t+10

Wu, Lu, Kohli, Freeman, Tenenbaum. NIPS'17

PhysNet

Lerer, Gross, Fergus. ICML'16

Comparing with PhysNet

Features

• Fast (<10ms)

Features

• Fast	(<10ms)
--------	---------

• Fast (<10ms)	Methods	2 Blocks	3 Blocks	4 Blocks	Mean
	Ours	75	76	73	75
	PhysNet	66	66	73	68
• Accurate	GoogleNet	70	70	70	70
	Chance	50	50	50	50

Features

• Fast (<10ms)	Methods	2 Blocks	3 Blocks	4 Blocks	Mean
	Ours	75	76	73	75
	PhysNet	66	66	73	68
• Accurate	GoogleNet	70	70	70	70
	Chance	50	50	50	50

- Rich: easily generalize to answer questions
 - 'What happens if? ...' (external perturbation)

Generalization

Modeling Multi -Modal Data

Zhang*, Wu*, Li, Huang, Traer, McDermott, Tenenbaum, Freeman. ICCV'17, NIPS'17

Physical Scene Understanding

Goal

• Explaining and reasoning about data

Approach

• Levering causal structure to integrate generative, forward models with efficient inference algorithms.

Advantages

Combining forward simulation engines and deep recognition networks.

- 1. Allowing learning with little or no supervision.
- 2. Offering rich generalization power.

- How many shape details do we need?
 - Graphics and Vision vs. Robotics

- How many shape details do we need?
 - Graphics and Vision vs. Robotics
- What are the right representational formats for 3D shape?
 - Voxels, Meshes, Point clouds, Procedures ...

- How many shape details do we need?
 - Graphics and Vision vs. Robotics
- What are the right representational formats for 3D shape?
 - Voxels, Meshes, Point clouds, Procedures ...
- Can these representations be learned from externally observable data, or internally generated simulations? What has to be wired in?

- How many shape details do we need?
 - Graphics and Vision vs. Robotics
- What are the right representational formats for 3D shape?
 - Voxels, Meshes, Point clouds, Procedures ...
- Can these representations be learned from externally observable data, or internally generated simulations? What has to be wired in?
- Physics and 3D vision for more general shapes and scenes
 - Can we generalize the learned shape prior to unseen object categories?

Physical Scene Understanding

