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Physical Scene Understanding
• What  can we learn from this video?

• 3D object  shapes (geometry)
• Object  propert ies (physics)

• Masses /  coefficients of frict ions
• Physical events (interact ion)

• Humans recover rich informat ion from this short  video. 
• Generalizat ion: Humans easily answer quest ions like

• What will happen next?
• What if … ?
• How to … ?

collisions rolling



Causal Models for Vision

• Helmholtz. Treat ise on Physiological Optics. 1867.
• Pearl. Causality. 2000.
• Carey. The Origin of Concepts. 2009.
• Yuille and Kersten. Vision as Bayesian inference: analysis 

by synthesis? Trends in Cognit ive Science, 2006.
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Action (t -1) • Classical Est imat ion and Control, 
Graphical Models (HMMs, Bayes Nets)

• Pro: Optimized for certain inference and 
learning algorithms

• Con: Limited expressiveness

• Simulat ion (Graphics/ Physics) Engines, 
Probabilist ic Programs

• Pro: Flexible, rich representat ions 
• Con: Lacking efficient , general-purpose 

inference and learning algorithms
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Learning to poke by poking, NIPS’16

Learning to push by grasping, ICRA’17
Learning to fly by crashing, IROS’17
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World state (t -1) World state (t )

Image (t -1) Image (t )

… …

Action (t -1)
Pros
• Efficient , model-agnost ic inference
• Scales with large labeled datasets

• Generalizat ion?
• Limited in generalizing outside t raining



Leveraging Causal Structure to Combine the Best of Both

World state (t -1) World state (t )

Image (t -1) Image (t )

… …

Action (t -1)



Leveraging Causal Structure to Combine the Best of Both

Key Idea: Condit ional Independence
Provides guidance on combining neural 
networks with simulat ion engines.
• When and where to use simulat ion engines 

vs. neural networks?
• What  t raining targets to use for neural 

networks? 
• What  intermediate representat ions to use in 

the neural networks? 
• What  t raining data to use for neural nets?

World state (t -1) World state (t )

Image (t -1) Image (t )

… …

Action (t -1)
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• Stat ic Scene 
• Scene de-rendering [CVPR’17]

• Scene Dynamics 
• Percept ion + Physics [NIPS’17]
• Mult i-Modal Learning (V + A)

[ICCV’17, NIPS’17]
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Current Approaches

• Reconstruct ion with neural nets
• 3D-R2N2 [ECCV’16]
• TL-Network [ECCV’16]
• HSP [3DV’17]
• …

• Reproject ion consistency
• Unsupervised Learning of 3D Structure 

from Images [NIPS’16]
• Perspect ive Transformer Net  [NIPS’16]
• DRC [CVPR’17]
• …
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2.5D Sketches as an Intermediate Representation

(a) Images

(b) 2.5D Sketches (c) 3D Shape

Inquiry had to do with feature-based recognit ion, how to separate figure from ground, how to extract
and interpret a ‘form’ or ‘figure’, how much analysis could be done in a data-driven or bot tom-up
way, and how much needed top-down influences.

All this type of thinking was dramatically swept away by the idea of the 2.5D sketch.
Marr. Vision. 1980
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Wu*, Wang*, Xue, Sun, Freeman, Tenenbaum. NIPS’17
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3D Shape
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Wu*, Wang*, Xue, Sun, Freeman, Tenenbaum. NIPS’17



MarrNet : 3D Reconstruction via 2.5D Sketches

3D Shape

(a) 2.5D Sketch 
Est imation

(b) 3D Shape Est imation

(c) Reproject ion Consistency

……

2D Image

normal

depth

silhouet te

Normal Ball

2.5D Sketches

Wu*, Wang*, Xue, Sun, Freeman, Tenenbaum. NIPS’17
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Comparisons on PASCAL 3D+

Images Ground t ruth MarrNetDRC

Methods IoU
DRC [CVPR ‘17] 0.34
MarrNet 0.38

DRC MarrNet GT
DRC 50 26 17

MarrNet 74 50 42
GT 83 58 50

Percentages of users that  preferred 
the left  approach to the top one

Intersect ion over Union (IoU)
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Images Ground t ruth MarrNet Images Ground t ruth MarrNet

Results on IKEA
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Self-Supervised Intrinsic Image Decomposition

Janner, Wu, Kulkarni, Yildirim, Tenenbaum. NIPS’17
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Janner, Wu, Kulkarni, Yildirim, Tenenbaum. NIPS’17
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Results on Intrinsic Image Decomposition
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De-render

Render

Wu, Tenenbaum, Kohli. CVPR’17



From Objects to Scenes (Scene De -rendering)

<obj ect s >
<bal l oon:  r i ght >
<bench:  yel l ow>
<t r ee:  r i ght >
<boy:  s t and happy>
<gi r l :  s i t  s ad>

</ obj ect s >

De-render

Render

Wu, Tenenbaum, Kohli. CVPR’17



Generalized Encoding-Decoding Structure

Graphics
Engine

(b) A generalized autoencoder(a) A standard autoencoder

Wu, Tenenbaum, Kohli. CVPR’17



Scene De-rendering

World state

GraphicsInverse 
graphics

Wu, Tenenbaum, Kohli. CVPR’17

Image

…

…

…



Model Details

Wu, Tenenbaum, Kohli. CVPR’17

(a) Input  image

Interpret ing 
proposals

Rendering 
images

(c) Inference

Proposing
segments

Applicat ions

(d) Rendered image
(I) (II) (III)

(b) Segment  proposals

Image
edit ing:

Captioning: The boy is …

Inpaint ing, analogy-making, …

(predict ion loss) (reconstruct ion loss)
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Wu, Lu, Kohli, Freeman, Tenenbaum. NIPS’17
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Inverse 
graphics

Wu, Lu, Kohli, Freeman, Tenenbaum. NIPS’17



PhysNet

Lerer, Gross, Fergus. ICML’16



Comparing with PhysNet

Video

VDA
(ours)

PhysNet
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Methods 2 Blocks 3 Blocks 4 Blocks Mean
Ours 75 76 73 75
PhysNet 66 66 73 68
GoogleNet 70 70 70 70
Chance 50 50 50 50

Features

• Fast  (<10ms)

• Accurate

• Rich: easily generalize to answer quest ions
• ‘What  happens if? …’ (external perturbat ion)
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Input VDA What if? Input Future Stabilizing force

Generalization








Modeling Multi -Modal Data

Zhang*, Wu*, Li, Huang, Traer, McDermott , Tenenbaum, Freeman. ICCV’17, NIPS’17
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Image (t -1) Image (t )

Physics

Acoust ics

…

Auditory  
analysis

…

Sound (t -1) Sound (t )



Physical Scene Understanding
Goal
• Explaining and reasoning about  data

Approach
• Levering causal st ructure to integrate generat ive, 

forward models with efficient  inference algorithms.

Advantages
Combining forward simulat ion engines and deep 
recognit ion networks.
• 1. Allowing learning with lit t le or no supervision.
• 2. Offering rich generalizat ion power.

World state (t -1) World state (t )

Image (t -1) Image (t )

Act ion (t -1)
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Future Work

• How many shape details do we need?
• Graphics and Vision vs. Robotics

• What are the right  representat ional formats for 3D shape?
• Voxels, Meshes, Point  clouds, Procedures …

• Can these representat ions be learned from externally observable data, or 
internally generated simulat ions?  What  has to be wired in?

• Physics and 3D vision for more general shapes and scenes
• Can we generalize the learned shape prior to unseen object  categories? 



Physical Scene Understanding
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Physics
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Action (t -1) Action (t )
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