Self-Supervised Learning



Self-Supervised Learning

Supervision Signal from the Data Itself



Why Self-Supervised Learning?

e COiriginally researchers learnt neural networks features (CNNs) by supervision
from annotated data (e.g., classification on ImageNet).

e But there is a limited amount of supervised data and an enormous amount of
unsupervised data. Self-supervised learning can use a lot more data. (LLMs).

e Researchers noticed that neural network features tended to be similar for
different visual tasks — e.g., classification and semantic segmentation. So
maybe there is a set of neural features common for all tasks which can be
learnt without supervision.

e Self-supervised learning is attractive for researchers who are influenced by
human vision.



Self-Supervised Learning: Backbone and Heads.

e After features have been learnt by self-supervised learning then they can be
applied to downstream tasks — e.g., object classification and semantic
segmentation — by training simple decision heads which have few parameters
and can be trained with a small amount of data.

e Recall that neural networks have a backbone, which extracts image features,
and a head which performs the task. So self-supervised learns the backbone.

e Self-supervised learning works by defining proxy tasks, which do not require
supervision, and then training neural networks to perform them. Researchers
explored several types of proxy tasks.



Predicting Context
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Predicting Orientation




Predicting Patch Organization




Predicting Color




Predicting (Unsupervised) Cluster ID
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...Unsupervised Learning motivated contrastive learning

e K-Means cluster — Views from one image as one cluster

Instance Recognition
or
Contrastive Learning

Contrastive Learning was the first popular self-supervised learning technique. It is
also useful for supervised learning, see earlier in the course.



Contrastive Learning: Query and Keys. +ve and —ve.

query

T

...from the same instance

randomly sampled...

positive key negative keys
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query The z’s are neural network features.

— They are functions of the image and
' _ ‘ network weights, which are learnt

7 by minimizing the loss function.
z_iis the query, z_j are positive keys
z_k are negative keys.

e _ . The learning selects network weights to

...from the same instance make the query features similar to the
positive kebs and differenao negative keys

positive key



Contrastive Learning: maximize similarity queries & +ve keys
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TOP 1 ACCURACY

Contrastive Learning
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Key: The +ve keys are obtained by Augmentation

Random Transformation
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Self-Supervised helps with attention

Supervised Transformer is trained for object classification. The attention
maps give an approximate segmentation of the target object.
A self-supervised transformer, using contrastive learning, gives tighter

attention maps.
Supervised

l.

Mathilde Caron, et al., Emerging Properties in Self-Supervised Vision Transformers, arXiv 2021



Self-Supervised Learning by Contrastive

e The basic finding is that simple heads based on neural network features
learnt by unsupervised (contrastive learning) have roughly the same
performance as fully supervised methods, but require less supervised data.

e The self-supervised features have attractive properties which make them
better than supervised methods for image reconstruction and for grouping
image regions by attention.



Why do we need self-supervised learning?

e Because labels are expensive.

e Because labels are limited.



How are labels limited?

e The information in one image is richer than its label.
e Label could be ambiguous, biased, incomplete...



Vision & Language: Example of Contrastive Learning

The trained data consists of paired images and text captions.

The goal is to find text and image features which are similar for each
pair and differ for the image and text features of the other pairs.

This is formulated as a lost function as before.

If the query is the image, then the +key is the text and the —ve keys
are the other images and text captions.
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CLIP is very popular for vision-
language tasks.

It is very low tech and good for
Initializing more advanced
methods.

CLIP: Contrastive Language—Image Pre-training

Alec Radford, et al., Learning Transferable Visual Models From Natural Language Supervision, arXiv 2021



Masked Image Modeling.

This was inspired by NLP where it was used for learning Large Language
Models (LLMs) but is being replaced by auto-regressive methods.



Masked Language Modeling

men basketball

T T

“Two playing a game of on an outside court.”

Devlin et al., BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding



Masked Image Modeling

We humans have the ability to first recognize the masked object and then infill it.



Language vs. Vision

e Language
o sparse, discrete, semantic-rich
o natural word tokens

e \ision
o dense, continuous, high-dimensional
o mimicking language: visual words/codebook?



BEIT: A Transformer with Masked Input
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Bao et al., BEIT: BERT Pre-Training of Image Transformers, NeurlPS 2022




The visual tokens — discrete — are learnt
by variational auto-encoders separately

BEIT Predicting Visua] Tokens from the MIM. The visual tokens are a

discrete dictionary of image patches.
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IBOT: Image BERT Pre-Training
with Online Tokenizer

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, Tao Kong

ByteDance, Johns Hopkins University
Shanghai Jiao Tong University, UC Santa Cruz
ICLR 2022



Masked and Multi-Viewed Input
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Each image x is first augmented to two views, each of which has a masked version.



Image Tokenizer
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[CLS] embeddings are transformed to visual tokens by /5] followed by softmax.

Caron et al., Emerging Properties in Self-Supervised Vision Transformers



Although this model is effective it has black
box aspects and it is hard to give intuitive

MaSked Image MOdeling reasons why they are effective.
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Patch embeddings of masked areas predict their corresponding unmasked version.



Linear Probing: iBOT is very effective with simple heads.

80 7
791 BYOL
SwAV
78 4
% MoCov3
_ﬂ:‘-" 77
G
—
fu‘S 76 -
.
jak)
4
E 75
74 4
ResNet
73 - MoCov3 ViT
25 50 100 200 400

Number of Parameters

Figure 1: Linear probing accuracy on ImageNet.



Fine-Tuning

Method Arch. Epo.! Acc.
MoCov3 VIT-S/16 600 81.4
BEiT ViT-S/16 800 81.4
DINO ViT-S/16 3200 82.0
iBOT ViT-S/16 3200 82.3
MoCov3 ViT-B/16 600 83.2
BEiT ViT-B/16 800 83.4
MAE ViT-B/16 1600 83.6
DINO ViT-B/16 1600 83.6
iBOT ViT-B/16 1600 83.8

ImageNet-1K pre-training and fine-tuning



Transferring to Downstream Tasks

Method Det.  ISeg. Seg.T Seg.
AP®>  AP™ mloU mloU
BEiT 50.1 435 27.4 45.8
DINO 50.1 434 34.5 46.8
MAE - - - 48.1
1BOT 512 44.2 38.3 50.0

ViT-B, pre-trained by IN-1K

COCO Detection and Instance Segmentation,

ADE20K Semantic Segmentation



Image-Level Visual Tokens: Qualitatively Interpretable




Patch-Level Visual Tokens: Qualitatively Interpretable




Ablations: Sharing Heads

Sharing [CLS] and Patch Heads

/
Method LMTM E[CLS] SH £-NN Lin. Fin.
1BOT v v v 69.1 742 81.5
v v X 69.0 73.8 81.5
v X - 95 298794
O X - 443 60.0 81.7
BEiT JAN X - 69 235814
DINO X v - 679 725 80.6
BEiT + DINO A v - 48.0 62.7 81.2

O: standalone DINO (w/o mcrop, 300-epoch)
A\: pre-trained DALL-E encoder

ViT-S/16, ImageNet-
1K



Ablations: w/o [CLS] loss

Method LMTM E[CLS] SH £-NN Lin. Fin.
1BOT v v v 69.1 742 81.5
v v X 69.0 73.8 81.5
v X - 95 298794
O X - 443 60.0 81.7
BEiT JAN X - 69 235814
DINO X v - 679 725 80.6
BEiT + DINO A v - 48.0 62.7 81.2

O: standalone DINO (w/o mcrop, 300-epoch)
A\: pre-trained DALL-E encoder

ViT-S/16, ImageNet-
1K



Ablations: standalone DINO

Method LMTM E[CLS] SH £-NN Lin. Fin.
1BOT v v v 69.1 742 81.5
v v X 69.0 73.8 81.5
v X - 95 298794
O X - 443 60.0 81.7
BEiT JAN X - 69 235814
DINO X v - 679 725 80.6
BEiT + DINO A v - 48.0 62.7 81.2

O: standalone DINO (w/o mcrop, 300-epoch)
A\: pre-trained DALL-E encoder

ViT-S/16, ImageNet-
1K



Masked Feature Prediction for Self-
Supervised Visual Pre-Training

Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, Christoph Feichtenhofer

Facebook Al Research, Johns Hopkins University
CVPR 2023



Masked Feature Prediction

We study five different types of features.

masked input target feature
eg, HOG
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Setting: Pre-Training + Fine-Tuning

feature type one-stage | variant arch. param. epoch’ | top-1
scratch - DeiT [84] - - - 81.8
pixel colors v RGB - - - 82.5
image descriptor v HOG [22] - - - 83.6
dVAE token X DALL-E [73] dVAE 54 1199 | 82.8
unsupervised feature X MoCo v2 [16] ResNet50 23 800 83.6
unsupervised feature X MoCo v3 [18] ViT-B 85 600 83.9
unsupervised feature X DINO [9] ViT-B 85 1535 | 84.0
supervised feature X pytorch [67] ResNet50 23 90 82.6
supervised feature X DeiT [84] ViT-B 85 300 81.9
pseudo-label X Token Labeling [50] NFNet-F6 438 360 78.8

ViT-B, ImageNet val accuracy



Feature #1: pixel colors

e RGB raw pixels
o A small gain
o trivial local statistics and high-frequency details

feature type one-stage | variant arch. param. epoch’ | top-1
scratch - DeiT [84] - - - 81.8
pixel colors v RGB - - - 82.5

+0.7



Feature #2: HOG

e Histogram of Oriented Gradients
o popularin 2000s
o invariance to geometry and photometric change (to some extent)
o fast to compute with pytorch and GPU
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from SIFT paper



Feature #2: HOG

ients

d

Histogram of Oriented Gra

from scikit-image




Feature #2: HOG

e Histogram of Oriented Gradients

o invariance helps!

MFP feature type one-stage | variant arch. param. epochJr top-1
scratch - DeiT [81] - - - 81.8
pixel colors v RGB - - - 82.5
image descriptor v HOG [22] - - - 83.6

]+1.8



Pixel vs. HOG: Color Ambiguity

pixel: large loss penalty because of unmatched color



Pixel vs. HOG: Texture Ambiguity

HOG: captures major edge directions



Visual Tokens

Feature #3: token ;,,’.‘,JQ [ 123 234 456 567
o) ‘_ ; B ,5,3,87 876‘765 543
e discrete VAE token Bk ood /2 2 poe s
o patch clustering T ¥ 211 323-3'33 _544
o BEIT

feature type one-stage | variant arch. param. epoch' | top-1

scratch - DeiT [84] - - - 81.8

pixel colors v RGB - - - 82.5

image descriptor v HOG [22] - - - 83.6

dVAE token X DALL-E [73] dVAE 54 1199 | 82.8




contrastive loss

ok -

Feature #4: deep features -
q k
e unsupervised deep features encoder encoder k

o contrastive unsupervised methods
o work better than others 7 zF
feature type one-stage | variant arch. param. epoch' | top-1
scratch - DeiT [84] - - - 81.8
pixel colors v RGB - - - 82.5
image descriptor v HOG [22] - - - 83.6
dVAE token X DALL-E [73] dVAE 54 1199 | 82.8
unsupervised feature X MoCo v2 [16] ResNet50 23 800 83.6
unsupervised feature X MoCo v3 [18] ViT-B 85 600 83.9
unsupervised feature X DINO [9] ViT-B 85 1535 | 84.0

+2.2



Feature #4: deep features

e supervised deep features

o more labels, lower top-1
o ResNet50 helps, ViT-B does not

feature type one-stage | variant arch param. epoch' | top-1
scratch - DeiT [84] - - - 81.8
pixel colors v RGB - - - 82.5
image descriptor v HOG [22] - - - 83.6
dVAE token X DALL-E [73] dVAE 54 1199 | 82.8
unsupervised feature X MoCo v2 [16] ResNet50 23 800 83.6
unsupervised feature X MoCo v3 [18] ViT-B 85 600 83.9
unsupervised feature X DINO [9] ViT-B 85 1535 84.0
supervised feature X pytorch [67] ResNet50 23 90 82.6
supervised feature X DeiT [84] ViT-B 85 300 81.9




class label

Visual Tokens-
Feature #5: pseudo label = i ——
e . | lsla,a?" 876 765 543
, R /112 223334 445
e pseudo class label for each patch - : '-,
o . 211 322 433 544
o labeled by a 86.5% supervised model = s e
o but results in a huge drop model labeler
feature type one-stage | variant arch. param. epoch' | top-1
scratch - DeiT [84] - - - 81.8 =
pixel colors v RGB - - - 82.5
image descriptor v HOG [22] - - - 83.6
dVAE token X DALL-E [73] dVAE 54 1199 | 82.8
unsupervised feature X MoCo v2 [16] ResNet50 23 800 83.6
unsupervised feature X MoCo v3 [18] ViT-B 85 600 83.9 -3.0
unsupervised feature X DINO [9] ViT-B 85 1535 | 84.0
supervised feature X pytorch [67] ResNet50 23 90 82.6
supervised feature X DeiT [84] ViT-B 85 300 81.9
pseudo-label X Token Labeling [50] NFNet-F6 438 360 78.8 #




Masked Feature Prediction
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ImageNet-1K Fine-Tuning

pre-train extra data extra model ViT-B  ViT-L

scratch [84] - - 81.8 81.5 A
supervisedsgs [27] IN-21K - 84.0 85.2

MoCo v3 [18] - momentum ViT  83.2 84.1

DINO [9] i momentum ViT 828 - 42
BEiT [2] DALL-E dVAE 83.2 85.2
MaskFeat (w/ HOQG) - - 84.0 85.7 &

ImageNet val accuracy



Action Classification

e Kinetics-400

(@]

o

rather small (~0.2 million video clips)
commonly using ImageNet pre-training
or even larger image dataset

model pre-train top-1 |top-5 | FLOPs x views | Param
Two-Stream 13D [12] - 71.6 1 90.0 216 x NA 25
ip-CSN-152 [85] - 778 192.8 | 109x3x10| 33
SlowFast 16x8 +NL [33] - 79.8 (93.9| 234x3x10| 60
X3D-XL [32] - 79.1|93.9| 48x3x10| 11
MoViNet-A6 [53] - 81.5(953| 386x1x1| 31
MVIiTvI-B, 643 [31] - 81.2]95.1| 455x3x3| 37
Swin-B, 32x2 [59] Sup, IN-21K  [82.7]955| 282x3x4| 88
ViT-B-TimeSformer [4] |Sup., IN21K | 80.7 |94.7 | 2380x3x1| 121
Swin-L, 32x2 [59] Sup., IN-2IK  [83.1]959| 604x3x4| 197
ViVITL [1] Sup., JFT-300M [ 83.5 | 94.3 | 3980x3x1| 308
Swin-L1384, 32x2 [59] |Sup., IN-2IK | 84.0 | 06.7 | 2107x5x 10| 200
ViVIT-H [1] Sup., JFT-300M [ 84.9 |95.8 | 3981x3x4| 654
TokenLearner [75] Sup., JET-300M | 85.4 | N/A | 4076x3x4| 450
Florence!384 [95] Text, FLD-900M | 86.5 |97.3 | N/Ax3x4| 647
SwinV2-G13s4 [58] | UM+ Sup. 86.8 | N/A | N/Ax5x4]| 3000

IN-21K+Ext-70M




Action Classification

o MaskFeat

o largely helps over scratch baseline
o better than IN-21K pre-training

model pre-train top-1 |top-5 | FLOPs x views | Param
Two-Stream 13D [12] - 71.6 1 90.0 216 x NA 25
ip-CSN-152 [85] - 77.892.8 | 109x3x10| 33
SlowFast 16x8 +NL [33] - 79.893.9 | 234x3x10| 60
X3D-XL [32] - 79.193.9| 48x3x10| 11
MoViNet-A6 [53] - 81.5(953| 386x1x1| 31
MViTv1-B, 64x3 [31] ; 812 |951| 455x3x3| 37
Swin-B, 32x2 [59] Sup., IN-21K 8271955| 282x3x4| 88
ViT-B-TimeSformer [4] |Sup., IN-21K 80.7 (947 | 2380x3x1| 121
Swin-L, 322 [59] Sup., IN-21K 83.11959| 604x3x4| 197
VIiViT-L [1] Sup., JFT-300M | 83.5 |94.3 | 3980x3x1| 308
Swin-L1384, 32x2 [59] |Sup., IN-21K 840 [96.7 | 2107x5%x10] 200
ViViT-H [1] Sup., JFT-300M | 84.9 | 95.8 | 3981x3x4| 654
TokenLearner [75] Sup., JFT-300M [ 85.4 | N/A | 4076x3x4| 450
Florencel384 [95] Text, ELD-900M | 86.5 | 97.3 | N/Ax3x4| 647
SwinV2-G1384 [58] 11\1{11-1;412;1:&-70M 86.8 | N/A | N/AxS5x4]| 3000
MVITS, 164 [56] ; 81.1|940| 7Ixix10]| 36
MVITS, 16x4 [56] Sup., IN-21K 8261953 71x1x10| 36
MVITS, 16x4 [56] MaskFeat, K400 | 822 [95.1| 71x1x10| 36
MViT-L, 16x4 [56] - 80.5|94.1| 377x1x10| 218
MViT-L, 164 [56] Sup., IN-21K 835(950| 377x1x10| 218
MVIT-L, 164 [56] MaskFeat, K400 | 84.3 [96.3 | 377x1x10| 218
MVIT-L, 164 [56] MaskFeat, K600 | 85.1 | 96.6 | 377x1x10| 218
MVIT-L1312, 32x3 [56] ; 822 (947 2063x3x5| 218
MVIT-L1312, 32x3 [56] | Sup., IN-21K 853 |96.6 | 2063x3x5| 218
MVIT-L1312, 323 [56]| MaskFeat, K400 | 86.3 | 97.1| 2063x3x5| 218
MVIT-L1312, 403 [56] | MaskFeat, K400 | 86.4 | 97.1 | 2828x3x4| 218
MVIT-L1352, 40x3 [56] | MaskFeat, K400 | 86.7 | 97.3 | 3790x3x4| 218
MVIT-L1352, 40x3 [56]| MaskFeat, K600 | $7.0 | 97.4 | 3790x3x4| 218



Results: Action Detection
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Action Detection on AVAZ2.0

Wei et al., Masked Feature Prediction for Self-Supervised Visual Pre-Training, CVPR 2022



Comparison to Contrastive Methods

e Contrastive methods: Invariance to data augmentation
o but invariance is not always correct
o heavily rely on “augmentation engineering”
o complex because of multi-views

e MaskFeat: Image modeling
o structure inside one image
o minimal augmentation
o drive large-scale models
o what about large-scale data?



Conclusion

e Self-supervised learning shows that it is possible to learn neural network
features without supervision.

e These image features are effective for downstream tasks using simple
classifier heads.

e They have often attractive properties such as qualitative interpretability but
these are not easy to quantifiable.

e Do they scale? Can we get big improvements over standard supervised
approaches using large unsupervised datasets? Debateable.

e Can we develop Large Vision Models which are analogous to Large
Language Models? Again this debatable. The input to LLMs are words and
tokens which are semantically meaningful. This is not so for Vision.
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