

Intriguing Adversarial Examples & How To Defend Against Them

Cihang Xie Johns Hopkins University

Deep networks are Good

Deep networks are **FRAGILE** to small & carefully crafted perturbations

Label: Chihuahua

Deep networks are **FRAGILE** to small & carefully crafted perturbations

We call such images as **Adversarial Examples**

Generating Adversarial Example is **SIMPLE**:

maximize loss($f(x+\Gamma)$, y^{true} ; θ) Maximize the loss function w.r.t. Adversarial Perturbation r

Generating Adversarial Example is **SIMPLE**:

Part I: Intriguing Properties of Adversarial Examples

- {Image, Model, Task}-Agnostic
- Beyond Pixel Perturbation
- Existence in Physical World

Part I: Intriguing Properties of Adversarial Examples

- {Image, Model, Task}-Agnostic
- Beyond Pixel Perturbation
- Existence in Physical World

Adversarial Perturbations can be Image Agnostic

Label: Digital Clock

Adversarial Perturbations can be Image Agnostic

We call such perturbations as Universal Adversarial Perturbations

Adversarial Examples can be Model Agnostic

Adversarial Examples can be Model Agnostic

We call such images as Transferable Adversarial Examples

Adversarial examples **EXIST** on different tasks

Adversarial examples **EXIST** on different tasks

semantic segmentation

Adversarial examples **EXIST** on different tasks

semantic segmentation

pose estimation

Adversarial examples **EXIST** on different tasks

semantic segmentation

pose estimation

South Africa's historic Soweto township marks its 100th birthday on Tuesday in a mood of optimism. 57% World

South Africa's historic Soweto township marks its 100th birthday on Tuesday in a mooP of optimism. 95% Sci/Tech

text classification

Adversarial examples **TRANSFER** between different tasks

Adversarial examples **TRANSFER** between different tasks

Quantitative Result of Transferability between Different Models [1]

Model	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-152	Adversarial examples
	FGSM	64.6%	23.5%	21.7%	21.7%	generated on Inc-v3 can
	I-FGSM	99.9%	14.8%	11.6%	8.9%	attack Inc.v/ IncRos.v/
Inc-v3	DI ² -FGSM (Ours)	99.9%	35.5%	27.8%	21.4%	
	MI-FGSM	99.9%	36.6%	34.5%	27.5%	and Res-152 with high
	M-DI ² -FGSM (Ours)	99.9%	63.9%	59.4%	47.9%	- success rate.

Quantitative Result of Transferability between Different Models [1]

Model	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-152	Adversarial examples
	FGSM	64.6%	23.5%	21.7%	21.7%	generated on Inc-v3 can
	I-FGSM	99.9%	14.8%	11.6%	8.9%	attack Inc.v/ IncRes.v/
Inc-v3	DI ² -FGSM (Ours)	99.9%	35.5%	27.8%	21.4%	attack $mc^{-}v^{4}$, $mc^{-}v^{2}$
	MI-FGSM	99.9%	36.6%	34.5%	27.5%	and Res-152 with high
	M-DI ² -FGSM (Ours)	99.9%	63.9%	59.4%	47.9%	success rate

This transfer phenomenon may indicates Different Networks Learn Similar Representations

[1] Xie, Cihang, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L. Yuille. "Improving transferability of adversarial examples with input diversity." In CVPR, 2019

Part I: Intriguing Properties of Adversarial Examples

- {Image, Model, Task}-Agnostic
- Beyond Pixel Perturbation
- Existence in the Physical World

Beyond Pixel Perturbations --- Spatially Transformed Adversary [2]

[2] Xiao, Chaowei, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. "Spatially transformed adversarial examples." In ICLR. 2018.

Only Rotation & Translation Are Enough! [3]

Natural

Adversarial

"mousetrap"

"revolver"

"vulture"

"orangutan"

[2] Engstrom, Logan, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. "A rotation and a translation suffice: Fooling cnns with simple transformations." In ICML. 2019

Beyond Pixel Perturbations --- Adversarial Context Examples [4]

[4] Wang, Jianyu, Zhishuai Zhang, Cihang Xie, et al. "Visual concepts and compositional voting." In Annals of Mathematical Sciences and Applications. 2018.

Part I: Intriguing Properties of Adversarial Examples

- {Image, Model, Task}-Agnostic
- Beyond Pixel Perturbation
- Existence in the Physical World

Existence in the Physical World --- Imperceptible Perturbations [5]

[5] Kurakin, Alexey, Ian Goodfellow, and Samy Bengio. "Adversarial examples in the physical world." In *ICLR Workshop*. 2017.

Existence in the Physical World --- Perceptible Perturbations [6]

With these adversarial stickers, networks cannot recognize stop signs.

[6] Eykholt, Kevin, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, et al. "Robust physical-world attacks on deep learning models." In CVPR. 2018.

Extension --- Attacking Object Detectors in the Physical World [7]

[7] Lifeng Huang, et al. "UPA²: Learning Universal Physical Adversarial Attack on Object Detectors." In *submission*.

Part II: Towards Robust Adversarial Defense

- Robust Input Images
- Robust Network Representations

Label: King Penguin

Part II: Towards Robust Adversarial Defense

- Robust Input Images
- Robust Network Representations

want to **remove** malicious manipulations from input images

Label: King Penguin

Part II: Towards Robust Adversarial Defense

- Robust Input Images
- Robust Network Representations

want to **learn** robust representations against adversarial images

Label: King Penguin

Feature Denoising for Improving Adversarial Robustness (CVPR'19)

Observation: Adversarial perturbations are **SMALL** on the pixel space

Observation: Adversarial perturbations are **BIG** on the feature space

Observation: Adversarial perturbations are **BIG** on the feature space

Our Solution: Denoising at feature level

Traditional Image Denoising Operations:

Local filters (predefine a local region $\Omega(i)$ for each pixel i):

• Bilateral filter
$$y_i = \frac{1}{C(x_i)} \sum_{\forall j \in \Omega(i)} f(x_i, x_j) x_j$$

• Median filter
$$y_i = median\{\forall j \in \Omega(i): x_j\}$$

• Mean filter
$$y_i = \frac{1}{C(x_i)} \sum_{\forall j \in \Omega(i)} x_j$$

Non-local filters (the local region $\Omega(i)$ is the whole image I):

• Non-local means
$$y_i = \frac{1}{C(x_i)} \sum_{\forall j \in I} f(x_i, x_j) x_j$$

Denoising Block Design

Denoising operations may lose information

• we add a **residual connection** to balance the tradeoff between removing noise and retaining original signal

Training Strategy: Adversarial training

- Core Idea: train with adversarial examples
- Implementation: distributed on 128 GPUs, 32 images per GPU (since finding adversarial examples is computationally expensive)

Two Ways for Evaluating Robustness

Defending Against White-box Attacks

- Attackers know everything about models
- Directly maximize loss(f(x+r), y^{true}; θ)

Two Ways for Evaluating Robustness

Defending Against White-box Attacks

- Attackers know everything about models
- Directly maximize loss(f(x+r), y^{true}; θ)

Defending Against Blind Attacks

- Attackers know nothing about models
- Attackers generate adversarial examples using substitute networks (rely on transferability)

Defending Against White-box Attacks

• Evaluating against adversarial attackers with attack iteration up to 2000 (more attack iterations indicate stronger attacks)

Defending Against White-box Attacks – Part I

Defending Against White-box Attacks – Part I

Defending Against White-box Attacks – Part II

All denoising operations can help

Defending Against White-box Attacks – Part III

Defending Against White-box Attacks – Part III

Defending Against Blind Attacks

- Offline evaluation against 5 BEST attackers from NeurIPS Adversarial Competition 2017
- Online competition against 48 UNKNOWN attackers in CAAD 2018

Defending Against Blind Attacks

- Offline evaluation against 5 BEST attackers from NeurIPS Adversarial Competition 2017
- Online competition against 48 UNKNOWN attackers in CAAD 2018

CAAD 2018 "all or nothing" criterion: an image is considered correctly classified only if the model correctly classifies all adversarial versions of this image created by all attackers

Defending Against Blind Attacks --- CAAD 2017 Offline Evaluation

model	accuracy (%)
CAAD 2017 winner	0.04
CAAD 2017 winner, under 3 attackers	13.4
ours, R-152 baseline	43.1
+4 denoise: null $(1 \times 1 \text{ only})$	44.1
+4 denoise: non-local, dot product	46.2
+4 denoise: non-local, Gaussian	46.4
+all denoise: non-local, Gaussian	49.5

Defending Against Blind Attacks --- CAAD 2017 Offline Evaluation

model	accuracy (%)
CAAD 2017 winner	0.04
CAAD 2017 winner, under 3 attackers	13.4
ours, R-152 baseline	43.1
+4 denoise: null $(1 \times 1 \text{ only})$	44.1
+4 denoise: non-local, dot product	46.2
+4 denoise: non-local, Gaussian	<u>46.4</u>
+all denoise: non-local, Gaussian	49.5

Defending Against Blind Attacks --- CAAD 2017 Offline Evaluation

model	accuracy (%)
CAAD 2017 winner	0.04
CAAD 2017 winner, under 3 attackers	13.4
ours, R-152 baseline	43.1
+4 denoise: null $(1 \times 1 \text{ only})$	44.1
+4 denoise: non-local, dot product	46.2
+4 denoise: non-local, Gaussian	46.4
+all denoise: non-local, Gaussian	49.5

Defending Against Blind Attacks --- CAAD 2018 Online Competition

Visualization

Adversarial Examples

Before denoising

After denoising

0.8

0.6

0.4

0.2

2.4

1.8

1.2

0.6

1.5

0.5

Defending against adversarial attacks is still a long way to go...

Questions?