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Motivation

It is known that digital perturbations can
easily fool the deep network.

(FGSM, PGD, C&W, ...)

“Basic iter.””; L, distance to clean image = 32 “L.L class™; L. distance to clean image = 28

A. Kurakin et. al., Adversarial Examples in the Physical World, ICLR 2017



Motivation

It is known that digital perturbations can
easily fool the deep network.

(FGSM, PGD, C&W, ...)

These type of attacks are well investigated,
and not very interesting these days.

“Basic iter.””; L, distance to clean image = 32 “L.L class™; L. distance to clean image = 28

A. Kurakin et. al., Adversarial Examples in the Physical World, ICLR 2017



Motivation

Easy tasks for adversaries

clean image e=4 e=8 16

1. Know both the architectures and
weights.

2. Backpropagate the gradients to all the
pixels according to intuitive loss
functions.

clean image ce=4 e=8 e=16

e=24 €=32 €e=48 e=64

A. Kurakin et. al., Adversarial Examples in the Physical World, ICLR 2017



Motivation

Let’s jump out and have a overview of the different attacks:

A. Gradient-based (white-box) attack:

a. Global perturbations (discussed in previous slides)

b. Local perturbations
I. Adversarial Patch

i. UPC
B. Gradient-free (Black-box) attack:

a. Global perturbations
i. ZOO, NES, Bandits, GenAttack...

b. Local perturbations
i. Ours



Motivation

Let’s jump out and have a overview of the different attacks:

A. Gradient-based (white-box) attack:
a. Global perturbations (discussed in previous slides)
b. Local perturbations
i. Adversarial Patch Clssterput__
i. UPC N
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T.B. Brown et. al., Adversarial Patch, arXiv preprint 2017
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(b) Altacking in Physical Space

L. Huang et. al., Universal Physical Camouflage Attacks on Object Detectors, CVPR 2020
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Motivation

Let’s jump out and have a overview of the different attacks:

A. Gradient-based (white-box) attack:
a. Global perturbations (discussed in previous slides)
b. Local perturbations
I.  Adversarial Patch
i. UPC
B. Gradient-free (Black-box) attack:
a. Global perturbations
i. ZOO, NES, Bandits, GenAttack...

b. Local perturbations
i. Ours PatchAttack



Defining Patch-based Attack

Mathematical Framework:

L(y,y'), where y=f(g(x);0),

B = T (Ean); if (u,v) €l
g (x):

s == Trpary otherwise

E=s(xf(-,0),8) C {(u,v)|ue[0,H),ve0,W)}

(1)

(3)



Defining Patch-based Attack

Intuitive Explanation:

A. Optimize a Image-specific location to superimpose the patch
B. Optimize the Image-specific pattern of this patch
C. Simultaneously and in a non-differential process



Sampled-based Attack

M etro pOI |S_ H aSt| n g Sa m p I | n g Aamir Khan Adam Driver Craig Robinson Dominic Cooper

Effective non-target attack in the fine-grained task,
e.g., face recognition

Stephen Collins Anna Gunn

e Not powerful

Not effective in targeted-attack scenario:
either the occlusion area is too large or the
failure attack occurs

Idris Elba Kevin Hart Omari Hardwick Omari Hardwick

A. Fawzi et. al., Measuring the effect of nuisance variables on classifiers, BMVC 2016

e Not efficient:

Large-number of queries are required



PatchAttack

In our PatchAttack, we model the attack as a decision-making process where an
agent finds the best position in the image to superimpose the patches and the way
how to texture them through reinforcement learning.



PatchAttack

Monochrome Patch Attack (MPA):
MPA_Gray: Optimize the patch locations and zero out the pixel values of the patch

MPA_RGB: Optimize the patch locations and colorize the patches

Texture-based Patch Attack (TPA):

TPA: Optimize the patch locations and texture the patches



PatchAttack: MPA

Patch Search with Reinforcement Learning:

S:{(u%vv%u??v%"" 7ulcvvg}'?u:é’7vé)} (4)
A(By) : P(as|(ar, - ,a:-1),1(-;6),x) t={1,---,4C} (5)
e Iny — A (a) /o?, target attack (6)
~ | In(1 —y) — A(a) /o2, non-target attack
E=J(a)
MPA : { T (z4.)=0 (7)
L=-r-InP

s 1 2 3 4 5 6 T 1 2 3 4 5 6 v
S = {(U’lavlvu]),ul?RlleaBlv = 7uC7vC7quUC'7 RCaGCHBC)} (8)



PatchAttack: MPA

MPAs are powerful in non-targeted setting.



PatchAttack: MPA
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PatchAttack: MPA

MPAs are powerful in non-targeted setting.

But not satisfying in targeted-setting.



PatchAttack: MPA

MPA_RGB
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PatchAttack: from MPA to TPA

MPAs are powerful in non-targeted setting, but not satisfying in targeted-setting.

Reason: MPAs only switch off the information on some parts of the image instead of adding additional
information, which prevents it from performing targeted attacks. For example, MPA_RGB achieves

superior performance compared with MPA_Gray.
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MPAs are powerful in non-targeted setting, but not satisfying in targeted-setting.

Reason: MPAs only switch off the information on some parts of the image instead of adding additional
information, which prevents it from performing targeted attacks. For example, MPA_RGB achieves
superior performance compared with MPA_Gray.

Solution: Enable the reinforcement learner not only to find where to put the patch but also to figure out
how to texture the patch. The core problem is to find an efficient parameterization of the texture, in order

to retain fast and query efficient attacks.



PatchAttack: from MPA to TPA

MPAs are powerful in non-targeted setting, but not satisfying in targeted-setting.

Reason: MPAs only switch off the information on some parts of the image instead of adding additional
information, which prevents it from performing targeted attacks. For example, MPA_RGB achieves
superior performance compared with MPA_Gray.

Solution: Enable the reinforcement learner not only to find where to put the patch but also to figure out
how to texture the patch. The core problem is to find an efficient parameterization of the texture, in order

to retain fast and query efficient attacks.

We build a class-specific texture dictionary.



PatchAttack: Texture Dictionary

Style Transfer:

Content;

Feature maps tensors Fl

Style of an Image

Gly=) FhF
k

1 l A1l :
E, = W ; (Gij - Gij)

L
ﬁ(f, I%) == Z lel
=0

L.A. Gatys et. al., Image Style Transfer Using Convolutional Neural Networks, CVPR 2016



PatchAttack: Texture Dictionary

Procedures of generating texture images in the dictionary

Collect Images of one specified class

Use Grad-CAM to filter the important spatial locations
Extract Styles

Use k-means clustering to calculate 30 texture embeddings
Generate texture images from texture embeddings

YVYVYYVYY

1,000 classes, 30,000 texture images, build upon the training set of ImageNet
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PatchAttack: Texture Dictionary
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PatchAttack: Texture Dictionary

Lionfish



PatchAttack: TPA

Integrating the Texture Dictionary into Patch Attack

S= {(ui~ v%vills’ u‘%av?v e =u%77 v%, 223'*“?3”?7)} (9)

TPA - &= J%(u%av%f" ?ué"v%’) (10)
T(xu,v) - J%((i?l)?uéllvva i ’iC’uCWvC



PatchAttack: TPA

(2) Select texture image (6) Get reward

~ - RL Agent
Texture dictionary

for the target class
€ (1) Select the patch position
(3) Select the patch position in the input

in the texture image

(5) Feed the image
to DCNN




PatchAttack: TPA
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Experiments

Non-targeted Attack

1000 images randomly selected
from the validation set of ImageNet

| Network | Attack | Acc. (%) | Avgarea(%)| Avgary
= 72.80 = =
HPA 0.40 18.05 10000
MPA Gray 0.00 6.57 9659
Resieto0 MPA RGB 0.00 541 9681
TPA_N4.4% 0.30 5.06 1137
TPA _N8_2% 0.30 3.10 983
= 74.10 = =
HPA 0.10 19.82 10000
MPA Gray 0.00 6.87 9624
RS2t MPA _RGB 0.00 5.73 9696
TPA_N4.4% 0.50 513 1195
TPA_N8_2% 0.30 313 1001
= 76.20 = =
HPA 0.80 19.22 10000
MPA Gray 0.00 7.88 9748
ol MPA RGB 0.00 6.23 9752
TPA_N4.4% 0.70 5.21 1280
TPA_N8_2% 0.50 3.95 1088
= 63.80 - -
HPA 0.20 16.61 10000
— MPA Gray 0.00 5.35 9578
MobileNet-V2 | —NibA.RGD 0.00 111 9603
TPA_N4.4% 0.30 1.63 362
TPA _N8.2% 0.30 2.74 756




Experiments

Targeted Attack

1000 images randomly selected from
the validation set of ImageNet

Target labels are randomly selected

| Network [ Attack | T.acc. (%) | Avgarea (%) | Avgary
= 0.10 = =
HPA 33.20 71.54 50000
ResNet50 MPA RGB 95.90 18.45 28361
TPA_N102% 97.60 7.80 15728
TPA_N10.4% 99.70 9.97 3643
TPA_N10.10% 100.00 15.36 3747
— 0.10 - —
HPA 31,50 71.68 50000
MPA RGD 24.90 10.38 28088
DenseNet121 |5 N10.9% 97.10 787 15920
TPA_N10.4% 99.90 10.19 8953
TPA_N10.10% 100.00 15.84 3970
— 0.00 - —
HPA 95.40 7257 50000
MPA RGB 27.60 13.86 24738
ResheXia0 TPA_N102% 97.60 750 15189
TPA_N10.4% 99.70 9.60 8223
TPA_N10.10% 100.00 15.04 3538
— 0.10 — —
HPA 92.10 69.45 50000
. MPA RGB 27.70 16.64 98204
MobileNet-V2 | —r5a~10.9% 98.50 778 15479
TPA_N10.4% 99.90 10.39 8948
TPA_N10.10% 100.00 16.85 1422




Experiments

Defense 1: Feature Denoising

| Non-target I Attack |  Acc. (%) | Avgarea (%)| Avgqry
- 61.60 - —
. MPA _RGB 0.00 0.48 9287
DenoiseResNet152 |\ —7pA N4.4% 1.60 171 919
TPA_N8_10% 130 291 867
Target I Attack | T.acc. (%) | Avgarea (%) | Avgary
— 0.10 - —
MPA _RGB 38.30 6.39 27464
Denoise_ResNet152 || TPA_N102% 84.00 9.73 22196
TPA _N10_4% 94.60 13.40 13932
TPA_N10_10% 99.30 20.90 6920




Experiments

Defense 2: Shape-biased Network

| Non-target | Attack |  Acc. (%) | Avgarea (%) | Avgqary
— 73.70 - -
Shape-Network || TPA_N4_4% 0.50 5.19 1242
TPA_N8_10% 0.20 3.7 1031
| Target | Attack | T.oacc. (%) | Avgarea (%) | Avgqry
— 0.10 - -
Bl R TPA_N10_2% 96.30 8.36 17443
B TPA N10.4% 100.00 10.31 9229
TPA_N10_10% 100.00 15.52 3822




Adversarial Examples
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Conclusion

We propose PatchAttack, a powerful black-box texture-based patch attack.

e Show that even small textured patches are able to break deep networks

e Monochrome Patch Attack achieves a strong performance on non-targeted attack, surpassing
previous work by a large margin using less queries and smaller patch areas

e Texture-based Patch Attack achieves exceptional performance in both targeted and non-targeted
attacks

e PatchAttack breaks traditional SOTA defenses and shape-based networks

yu



