1. GANs and StyleGANs
2. AutoEncoders
Progress for Image Generation

2014: GAN
2015: DCGAN
2017: PG-GAN
2018: StyleGAN
2018: BigGAN
2019: StyleGANv2
2020: StyleGAN-ADA

2020: NeRF (Neural Radiance Fields)

2021: OpenAI DALL-E (VQ-VAE)

Arm chair in shape of avocado

Bolei, Zhou, Tutorial on Interpretable Machine Learning for Computer Vision at CVPR 2021
Progress for Image Generation

An astronaut riding a horse in a photorealistic style.

Google Imagen https://imagen.research.google/
Meta Make-A-Video https://makeavideo.studio/
GPT-4 ????
Generative Adversarial Networks (GANs)
Generative Adversarial Networks (GANs)

- The basic idea of GANs is to set up a game between two players.
 - **Generator**
 - Creates samples that are intended to come from the same distribution as the training data
 - The counterfeiter: Trained to fool the discriminator
 - **Discriminator**
 - Examines samples to determine whether they are real or fake
 - The police: Trained to distinguish between the generated or the real (training data)

- Formally, GANs are a structured probabilistic model containing latent variables z and observed variables x.
Generative Adversarial Networks (GANs)

Generator

Fake bedroom

Real/Fake

Discriminator

Real bedroom

training data

Goodfellow et al. NeurIPS’14
Generative Adversarial Networks (GANs)

<table>
<thead>
<tr>
<th>Latent</th>
<th>Generator</th>
<th>Fake bedroom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Real/Fake</th>
<th>Discriminator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Real bedroom

Goodfellow et al. NeurIPS’14
Generative Adversarial Networks (GANs)

typically drawn from a pre-defined distribution (eg. Gaussian)

Goodfellow et al. NeurIPS’14
Generative Adversarial Networks (GANs)
Generative Adversarial Networks (GANs)
StyleGANs

Generator

(a) Traditional

(b) Style-based generator

Tero Karras et al., A Style-Based Generator Architecture for Generative Adversarial Networks, CVPR 2019
StyleGAN

Adain

adaptive instance normalization

Adain(x,y) = ys,i \frac{x_i - \mu(x_i)}{\sigma(x_i)} + yb,i,
StyleGANs

- StyleGAN embeds the input latent code z into an intermediate latent space w
 - $w = F(z)$
- Now it is w, not z, that controls the style of the generated images

Tero Karras et al., A Style-Based Generator Architecture for Generative Adversarial Networks, CVPR 2019
StyleGANs

- StyleGAN embeds the input latent code \(z \) into an intermediate latent space \(w \)
 - \(w = F(z) \)
- Now it is \(w \), not \(z \), that controls the style of the generated images
 - The mapping \(F \) can “unwarp” \(z \) to \(w \) so that the factors of variation become more linear.
 - Style: factors of variation of the domain of interest

Tero Karras et al., A Style-Based Generator Architecture for Generative Adversarial Networks, CVPR 2019
StyleGANs - The Disentangled Latent Space

- There are various definitions for disentanglement.
- A common goal is a latent space that consists of linear subspaces, each of which controls one factor of variation.

Zongze Wu et al., StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation, CVPR 2021
Which latent space is more disentangled?

Reconstruction Error (Xu et al. CVPR’21)

<table>
<thead>
<tr>
<th>Space</th>
<th>MSE</th>
<th>FID</th>
</tr>
</thead>
<tbody>
<tr>
<td>W space</td>
<td>0.0601</td>
<td>22.24</td>
</tr>
<tr>
<td>S space</td>
<td>0.0464</td>
<td>18.48</td>
</tr>
</tbody>
</table>

Disentanglement (Wu et al. CVPR’21)

<table>
<thead>
<tr>
<th>Space</th>
<th>Disentanglement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z space</td>
<td>0.31</td>
</tr>
<tr>
<td>W space</td>
<td>0.54</td>
</tr>
<tr>
<td>S space</td>
<td>0.75</td>
</tr>
</tbody>
</table>
GAN Inversion

Applying the pretrained GAN model to image processing tasks

GAN inversion:
\[x^* = \text{argmin}_x \| G(x) - I \| \]

Colorization:
\[x^* = \text{argmin}_x \| \text{rgb2gray}(G(x)) - I_{\text{gray}} \| \]

Super-resolution:
\[x^* = \text{argmin}_x \| \text{down}(G(x)) - I_{\text{small}} \| \]

Masked optimization
\[x^* = \text{argmin}_x \| m \cdot G(x) - m \cdot I_{\text{context}} \| \]

- (a) Image Reconstruction
- (b) Image Colorization
- (d) Image Denoising
- (e) Image Inpainting

Zhu, Shen, Zhao, Zhou. *In-domain GAN Inversion*. ECCV’20

Bolei, Zhou, Tutorial on Interpretable Machine Learning for Computer Vision at CVPR 2021
Encoding Real Image into StyleGAN space

\[I \rightarrow \text{Encoder} \rightarrow x = E(I) \rightarrow \text{StyleGAN Generator} \rightarrow I' = G(x) \]
AutoEncoders

https://lilianweng.github.io/posts/2018-08-12-vae/
AutoEncoders

- Encoder
 - Transforms the original high-dimension input (e.g., images) into the low-dimensional latent.
 - Hopefully lossless

- Decoder
 - Recovers the high-dimensional data from the encoded low-dimensional latents

- Dimensionality Reduction
 - Links to PCA

$$L_{AE}(\theta, \phi) = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - f_{\theta}(g_{\phi}(x^{(i)})))^2$$
Variational AutoEncoders

● Vanilla autoencoder’s latent space is NOT well-organized/structured to be sampled from
 ○ Because there is no force for the latent space to do so

● Variational AutoEncoders
 ○ Autoencoders whose latent space is regularized to a structured distribution (e.g., Gaussian distribution)
 ○ The latent is now a distribution
Variational AutoEncoders

\[L_{VAE}(\theta, \phi) = - \log p_\theta(x) + D_{KL}(q_\phi(z|x) \| p_\theta(z|x)) \]
\[= - \mathbb{E}_{z \sim q_\phi(z|x)} \log p_\theta(x|z) + D_{KL}(q_\phi(z|x) \| p_\theta(z)) \]

https://miro.medium.com/max/1400/1*ejNnusxYrn1NRDZf4Kg2lw@2x.webp
Variational AutoEncoders

The reconstruction term:

$$L_{VAE}(\theta, \phi) = - \log p_\theta(x) + D_{KL}(q_\phi(z|x) || p_\theta(z|x))$$

$$= -E_{z \sim q_\phi(z|x)} \log p_\theta(x|z) + D_{KL}(q_\phi(z|x) || p_\theta(z))$$
Variational AutoEncoders

\[L_{VAE}(\theta, \phi) = -\log p_\theta(x) + D_{KL}(q_\phi(z|x)\|p_\theta(z|x)) \]

the regularization term:
KL divergence to the prior distribution
Summary

GAN: Adversarial training

VAE: maximize variational lower bound

Diffusion models: Gradually add Gaussian noise and then reverse

Recall Fidler’s 3D Neural Rendering Approach

\[I \leftrightarrow W \leftrightarrow z \leftrightarrow I \]

- The whole system is an autoencoder
- \(I \rightarrow W \): An autoencoder approach where the decoder is a differentiable renderer \(I = F(W; \alpha) \) and \(P_\varphi(W \mid I) \) is the encoder.
- \(z \rightarrow I \): A learned StyleGAN generative model \(P_\theta(I \mid z) \)
- \(W \rightarrow z \): Learn \(f_\psi(z \mid W) \) using an autoencoder reconstruction loss
 - This can be done by the autoencoder because the latent variables of styleGANs are fairly interpretable and so the function \(f_\psi(z \mid W) \) cannot be too complicated