1. GANs and StyleGANs

2. AutoEncoders

Chen Wei, 11/29/2022 @PMVC

Progress for Image Generation

2020: NeRF (Neural Radiance Fields)

2021: OpenAl DALLE (VQ-VAE) Arm chair in shape of avocado

Progress for Image Generation

2020? 2022?

An astronaut riding a horse in a photorealistic style.

Diffusion Models

OpenAI DALL-E2 <u>https://openai.com/dall-e-2/</u> Google Imagen <u>https://imagen.research.google/</u> Meta Make-A-Video <u>https://makeavideo.studio/</u> GPT-4 ???

Goodfellow et al. NeurIPS'14

- The basic idea of GANs is to set up a game between two players.
 - Generator
 - Creates samples that are intended to come from the same distribution as the training data
 - The counterfeiter: Trained to fool the discriminator
 - Discriminator
 - Examines samples to determine whether they are real or fake
 - The police: Trained to distinguish between the generated or the real (training data)
- Formally, GANs are a structured probabilistic model containing latent variables **z** and observed variables **x**.

Ian Goodfellow, NIPS 2016 Tutorial: Generative Adversarial Networks

Goodfellow et al. NeurIPS'14

Goodfellow et al. NeurIPS'14

Tero Karras et al., A Style-Based Generator Architecture for Generative Adversarial Networks, CVPR 2019

Tero Karras et al., A Style-Based Generator Architecture for Generative Adversarial Networks, CVPR 2019

StyleGANs

- StyleGAN embeds the input latent code z into an intermediate latent space w
 w = F(z)
- Now it is **w**, not **z**, that controls the *style* of the generated images

Tero Karras et al., A Style-Based Generator Architecture for Generative Adversarial Networks, CVPR 2019

StyleGANs

- StyleGAN embeds the input latent code z into an intermediate latent space w
 w = F(z)
- Now it is **w**, not **z**, that controls the *style* of the generated images
 - The mapping **F** can "unwarp" **z** to **w** so that the factors of variation become more linear.
 - Style: factors of variation of the domain of interest

Tero Karras et al., A Style-Based Generator Architecture for Generative Adversarial Networks, CVPR 2019

StyleGANs - The Disentangled Latent Space

- There are various definitions for disentanglement.
- A common goal is a latent space that consists of linear subspaces, each of which controls one factor of variation.

Zongze Wu et al., StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation, CVPR 2021

Which latent space is more disentangled?

Reconstruction Error (Xu et al. CVPR'21)

Space	MSE	FID
W space	0.0601	22.24
S space	0.0464	18.48

Disentanglement (Wu et al. CVPR'21)

Space	Disentanglement	
Z space	0.31	
W space	0.54	
S space	0.75	

GAN Inversion

Applying the pretrained GAN model to image processing tasks

GAN inversion:

 $x^* = argmin_x ||G(x) - I||$

Colorization:

 $x^* = argmin_x ||rgb2gray(G(x)) - I_{gray}||$

Super-resolution:

 $x^* = argmin_x || \operatorname{down}(G(x)) - I_{small} ||$

(a) Image Reconstruction

Gu, Shen, Zhou. Image Processing Using Multi-Code GAN Prior. CVPR'20

Bolei, Zhou, Tutorial on Interpretable Machine Learning for Computer Vision at CVPR 2021

Masked optimization

$$x^* = argmin_x ||m \cdot G(x) - m \cdot I_{context}|$$

Zhu, Shen, Zhao, Zhou. In-domain GAN Inversion. ECCV'20

Encoding Real Image into StyleGAN space

AutoEncoders

AutoEncoders

- Encoder
 - Transforms the original high-dimension input (eg., images) into the low-dimensional latent.
 - Hopefully lossless
- Decoder
 - Recovers the high-dimensional data from the encoded low-dimensional latents
- Dimensionality Reduction
 - Links to PCA

$$L_{ ext{AE}}(heta,\phi) = rac{1}{n}\sum_{i=1}^n (\mathbf{x}^{(i)} - f_ heta(g_\phi(\mathbf{x}^{(i)})))^2$$

- Vanilla autoencoder's latent space is NOT well-organized/structured to be sampled from
 - Because there is no force for the latent space to do so
- Variational AutoEncoders
 - Autoencoders whose latent space is regularized to a structured distribution (eg., Gaussian distribution)
 - The latent is now a *distribution*

https://miro.medium.com/max/1400/1*ejNnusxYrn1NRDZf4Kg2lw@2x.webp

https://miro.medium.com/max/1400/1*ejNnusxYrn1NRDZf4Kg2lw@2x.webp

Summary

Recall Fidler's 3D Neural Rendering Approach

$I\,\mapsto\,W\,\mapsto\,z\,\mapsto\,I$

- The whole system is an autoencoder
- I \rightarrow W: An autoencoder approach where the decoder is a differentiable renderer I=F(W; α) and P_{ω}(W | I) is the encoder.
- $z \rightarrow I$: A learned StyleGAN generative model $P_{\theta}(I \mid z)$
- $W \rightarrow z$: Learn $f_{W}(z \mid W)$ using an autoencoder reconstruction loss
 - This can be done by the autoencoder because the latent variables of styleGANs are fairly interpretable and so the function $f_{u}(z \mid W)$ cannot be too complicated