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Diffusion Models
conditioned on Text

 Diffusion Models conditioned on
text are able to generate create
complexand realistic images.

* Theycan take advantage ofthe huge
advances made by Large Language
Models (Auto-Regressive).

* This prize-winning images was
created almost entirely by DMs.

“Théatre D'opéra Spatial” entry for the Colorado State Fair.



Diffusion Models : Auto-Encoder
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Diffusion Architecture

* These are variants of Unet.

concatenation (skip connection)

concatenation (skip connection)

* Out-of-scope ofcourse.
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Generate Images

 Sample the latent variables --
random gaussian noise.

* Iterative sampling generates an
image.

1. Sample Gaussian noise
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2. lteratively denoise the image
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Stable
Diffusion
e Stable Diffusion

performs diffusion in the
latent space.

Xo | :U ! X ’d
T
Latent data

lllustration of an autoencoder as proposed by the Stable Diffusion paper [14]
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Stable Diffusion i1s conditioned on text.

* This 1s performed bya cross-attentional mechanism.
* This enables prompting on Text.
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Generation by Text Prompts

 Afew examples.

An astronaut nding a A chrome-plated duck A cute corgi lives i a A dog looking curiously
horse 1n  photorealistic with a golden beak argu- house made out of sushi. 1n the marror, seeing a cal.
style. ing with an angry Lurtle in

a forest.



Limitations

* DMs can generate a veryrich variety ofrealistic images controlled
by text prompts. And can be extended to generate videos.

* But, for computer vision, these are lacking as generative models.
From analysis by synthesis perspective we would like generative
models that are conditioned on the world state.

« DMs are conditioned on latent variables, which are hard to
understand, and on text prompts. This limits their usefulness.
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