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Humans reason with vision and language

ClC

vision

@ - Leaves turn
yellow in autumn.

language



Visual Question Answering is a challenging task

Q: The cylinder that is the same size as Q: What does the little boy in front of the
the metallic sphere is what color? table hold?

A: Purple A: Toothbrush



A paradox in VQA

Standard end-to-end models

image —

text —»

—> dNSWer

* Perform well on IID setting
* Not robust to distribution shifts

Neural modular methods

image - module-1 [— -
» module-2 —T
, S
text module-3

—>

module-n

> answer

e More robust

* Not perform well on standard

real datasets

We want to understand this better



Standard VQA models are not robust

Text shortcuts Visual contexts

ontext Perturbation
Tennis Ball — Soccer Ball
¥ i ! £

* “what color..” - white
* “isthere..” - yes
* “how many..” - 2

 “\WWhat color is the banana” >
yellow

Question: What color is the woman’s dress?
Ground-truth answer: Orange.

Model prediction: Orange. «° Model prediction: White. X

Swapmix: Diagnosing and regularizing the over-reliance on visual context in visual question answering.
Vipul Gupta, Zhuowan Li, Adam Kortylewski, Chenyu Zhang, Yingwei Li, Alan Yuille.
In CVPR 2021.




An alternative: Neural Modular Methods

* Parse a question into a series of operations
* Each operation is implemented as a separate neural module

What color is his tie?

Y

attend[tie]

» classify[color] yellow

Andreas, Jacob, et al. "Neural module networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.



An alternative: Neural Modular Methods

(a) Input Image (b) Object Segments (c) Structural Scene Representation

ID Size Shape  Material Color X ¥ 3

r 1 Small Cube Metal Purple -0.45 -1.10 0.35
Mask \
= ronn == N 2 Large  Cube Metal Green 383 004 070
o CT]TI
N e u ra I Sym bol |c VQA 3  Large  Cube Metal Green 2320 063 0.70
4 Small Cylinder  Rubber Purple 0.75 1.31 0.35
> 5 Large Cube Metal Green 1.58 -1.60 0.70
L. Scene Parsing (de-rendering) l
IL Question Parsing II1. Program Execution

(Program Generation)

(d) Question (e) Program

1. filter_shape 3. filter_shape g ‘
| LSTM | —» 1. filter shape(scene, cylinder) 2. relate 4, filter size - coun
LSTM |[— 2. i 1D Size Shape ... ID Size

How many cubes that LSTM 2. relate(behind) s bP e L
are behind the cylinder —»| -~ o [[ LSTM |- 3. filter_shape(scene, cube) —> i LB | oo B2 oo ADEWEL:
are large? . . 2 Large Cube 3 Large

= 4. filter_size(scene, large) D mn E | 5 T

| LSTM |=> 5. count(scene) 5  Large Cube

Q.. | Visual Representation | Concept Embeddings | Back-propagation

V : Obj 1 \i Sphere Il EEEEVENE ...... i
—i Obj 2 S

Symbolic Reasoning - Neural Symbolic Concept Learner

Answer: Cylinder
Groundtruth: Box

Semantic Parsing (Candidate Interpretations) !

(C]
) . s 1/ Query(Shape, Filter(Red, Relate(Left, Filter(Sphere)))) |
Q: What 1S the shape of — X Query(Shape, Filter(Sphere, Relate(Left, Filter(Red))))  —
the red object left of the X Exisi(AERGlate(Shape, Filter(Red, Relate(Lefs, Filer(Sphere)))| REINFORCE

sphere?
Yi, Kexin, et al. "Neural symbolic vga: Disentangling reasoning from vision and language understanding." NeurlPS 2018.
Mao, Jiayuan, et al. “The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision.” ICLR 2019.



Neural modular methods

Pros:
* Interpretable

Filter Filter Filter ilter
CLEVR-Ref+ (by CCVL) g oL size muterlul> shope > |5|ble >
CVPR 2019 }
|r large | r metnl ‘ [ cube ] ful.h_.r

The fully visible big shiny block(s)
e Data-efficient

* Robust
* SoTA performance on CLEVR

Liu, Runtao, et al. "Clevr-ref+: Diagnosing visual reasoning with referring expressions." CVPR. 2019.



Neural modular methods

Pros: Cons:

* Interpretable * Need explicit reasoning programs
(partly addressed by NSCL)

* Low performance on real images

* Data-efficient
* Robust (Need to be verified)
* SoTA performance on CLEVR



Neural modular methods

Pros: Cons:

* Interpretable * Need explicit reasoning programs
(partly addressed by NSCL)

* Low performance on real images

* Data-efficient
* Robust (Need to be verified)
* SoTA performance on CLEVR



Modular methods suffer on real data

99.8 989 98.9 99.7

e m NSVQA m NSCL
90 m MAC m mDETR
80 non-modular
70 62.5
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Outline

* Why do symbolic methods suffer on real images? How to improve
them? [iccv 2021]

e Super-CLEVR: How to study domain robustness more
systematically? [cvPR 2023 Highlight]

e Extension of Super-CLEVR with Part, Pose, Occlusion [0ongoing]



Why do Symbolic Methods suffer
on Real Images?
How to improve them?

Calibrating Concepts and Operations: Towards Symbolic Reasoning on Real Images.
Zhuowan Li, Elias Stengel-Eskin, Yixiao Zhang, Cihang Xie, Quan Hung Tran, Benjamin Van Durme, Alan Yuille
In ICCV 2021.




Overview: two reasons, and solutions

Reason-1: Reason-2:
Long-tail distribution Unequal importance of reasoning steps
Egggé select(boy) — filter(little)
oo ] — relate(table, front) —> | query(hold)
- What does the little boy in front of the table hold?

Solution-1: Solution-2:

Calibrating concepts Calibrating operations



1. Real data suffers from long-tailed distribution

450000 - Synthetic CLEVR dataset
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How do long tails affect concept learning?

Recall NSCL:

Back-propagation
| {—

Symbolic Reasoning

Answer: Cylinder
Groundtruth: Box

................................................................................

Semantic Parsing (Candidate Interpretations)

e
. : $ 1/ Query(Shape, Filter(Red, Relate(Left, Filter(Sphere)))) ,
Q: What 1_5 the shape of — X Query(Shape, Filter(Sphere, Relate(Left, Filter(Red)))) 54—
the red object left of the | X Exist(AERelate(Shape, Filter(Red, Relate(Left, FllteI{Sphere)))}) REINEFORCE

sphere?

Normalized Concept embeddings hinder the learning the concept distributions

| o

Mao, Jiayuan, et al. “The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision.” ICLR 2019.



How does this distribution affect concept learning?

e By default, concept embeddings are normalized.

* Simply removing the normalization on concept embedding yields
substantially better performance (+3.4%)

* The magnitudes of the embeddings matter!



Unnormalizing concept weights

Positive correlation between concept frequency and embedding norm
Size

ek
-

Embedding norm size
N

-
o 1

5 10
Concept frequency (log)



2. Reasoning steps are of unequal importance

Q: What does the little boy in front of the table hold?

Q: The cylinder that is the same size as the metallic A: Toothbrush
sphere is what color? Prog: select(boy) filter(little) relate_s(table, front)
A: Purple query_rel_o(hold)

Prog: select(sphere) filter’etallic) samesize() _,
filter(cylinder)_;1ueryco|or()

- -

- -



Intuition: what it we adjusting operation weights?

Question: Is there a bag in this image that is not black?

Groundtruth: No
(1) Select(bag) scores:

[-7.0, -6.0, 2.1, -9.9]
3 light switch (2) Filter(not black) scores:
0.8,-0.7, -1.7, 2.1]

Merge: (1) + (2): Exict?
[-6.2, -5.3,0.4, -7.8 ] Y Answer: Yes

With weight: (1) + 2*(2) gyict?
[-5.4, -4.6, -1.3, -5.7 ] Answer: No

1 headboard




Method: Calibrating Concepts and Operations

* Calibrating concepts
* Explicitly learnable norm size for each concept:
_ ., type
ccunce*pt wggnggptcconcept
 Calibrating operations

* Train a LSTM weight predicter to predict weights for each module using context
* Merge operation results with learned weights:

-2 s

JED(p



Calibrating operations:
predict weights for each operation

Operation Weight Predictor

L LSTM |+ (Pu, D2 s Pm)

N

J

Answer: horse
A
e ™
Scene Representation T Executor xl
: Query i+ d m =
horse I BN N gressasssssasnes : /ﬁb
pectator  mememmn | = | i Select foomilem ewpye—
Relate —" | W oxw, «+————
hurdle Il BN N PR ;
\ / i Select :— m LR —
\} ................. e -1//

Faster-RCNN |

Positional Repr.

concept
weight

Con

pt embedding /

Calibrating Concepts:

-

Program

[ Query(name) J

o~

Select[name]
(animal)

[ Relate_s(left) ] [

|

[ Select[name](spectator) J

)

Question: How is the animal to the

left of the spectators called?

Learn magnitudes for each concept in each module



Both the concept and operation calibrations help!

1 (Baseline) Normalized Average 47.01
2 Normalized Calibrated 51.03
3 Unnormalized Calibrated 54.65

4 (Ours) Calibrated Calibrated 56.13



Our method helps bridge the gap

LXMERT (Tan and Bansal, 2019) 60.33

non-symbolic NSM (Hudson and Manning, 2019) 63.17
MNM (Chen et al., 2021) 60.83

symbolic V-FOL (Amizdeh et al., 2020) 54.76

CCO (Ours, 2021) 56.38



Analysis of operation weights

* Prune low-weight modules progressively from the question
* The proposed perturb split can be used to analyze model behaviors

VWhat does the little boy in front of the table hold?

sel ect (boy)

N

filter(little)

Y

rel ate _s(tabl e,
front)

query rel o
hol d)

sel ect (boy)

\

query rel of
hol d)

What does the boy hold?



Analysis: Perturbed Test Split

4\
Jl

=
E % 3-
5 \:
J
::]C . -~ LXMERT == Ours
=+=V-FOL-NC == Qurs w/o OC
-o=V-FOL
0 25 50 75 100

% operations removed
Figure 5: Accuracy drop of different models when the test-
ing questions are progressively perturbed by removing rea-
soning operations with low weights.

The weight predictor assigns higher
weights to more important
operations.



Analysis: Perturbed Test Split

Symbolic methods even increase
performance when low-weighted

\’\ operations are removed.
~-1 XMERT ~-Ours *

|
/

A Accuracy
|
]
4

®
—21 V-FOL-NC Ours w/o OC \i\
-=V/-FOL \3
y s % 75 100

% operations removed
Figure 5: Accuracy drop of different models when the test-
1ng questions are progressively perturbed by removing rea-
soning operations with low weights.



Summary of Neuromodular on Real Data

* The performance of Neuromodular methods is improved by the two
methods described above. But this does not solve the problem. Why
can’t Neuromodular or standard methods get 100% success?

* What else is going on?
* Conjectures:

* (1) The standard end-to-trained methods can exploit the biases of the
datasets, but the Neuromodular approaches are less effective at this.

* (2) The Neuromodular methods use deep networks as their vision
modules. They need better vision modules.

* (3) The training confounds the vision and the language by training
them together.

* How to study this? Better controlled datasets. Out-of-distribution
testing.



How to study the domain
robustness more systematically?

Super-CLEVR: A Virtual Benchmark to Diagnose Domain Robustness in Visual Reasoning?
Zhuowan Li, Xingrui Wang, Elias Stengel-Eskin, Adam Kortylewski, Wufei Ma, Benjamin Van Durme, Alan VYuille.
CVPR 2023 Highlight.




Super-CLEVR dataset

CLEVR Super-CLEVR

* Create the Super-CLRVR dataset using more realistic objects.
* This is more challenging
* |t controls domain shifts to study robustness.



Super-CLEVR

e Super-CLEVR is more complex than CLVR. It contains classes of
objects — vehicles — from the ShapeNet repository. These are
rendered to generate semi-realistic images.

e Super-CLEVR is controllable. We can systematically vary factors like
the numbers of objects in the images, their poses in 3D, the
occlusion, and so on.

e Super-CLEVR can be used to test VQA algorithms on data on which it
has been trained. But it can also be used to test how VQA tests
algorithms to generalize to out-of-distribution domains.

e Super-CLEVR can be extended to test VQA with adversarial examiners
(but this has not been done).



Generalization: Decompose and analyze

Four robustness factors in VQA domain shifts:
* visual complexity
e guestion redundancy
e concept distribution
e concept compositionality



Decompose VQA domain shifts into 4 factors

* visual complexity
how hard is the image

Easy Hard
e question redundancy

e concept distribution
e concept compositionality



Decompose VQA domain shifts into 4 factors

* visual complexity

e question redundancy
the question may contain unnecessary information

What does the Fere boy m—ﬁren{—e#‘ What is feedlng the farge animal
the-table hold? beaind-hetense?

e concept distribution
* concept compositionality



Decompose VQA domain shifts into 4 factors

* visual complexity
e question redundancy

e concept distribution
The distribution the concepts (objects names and attributes)

0.0 -
blue cyan yellow purple gray brown green red gray red blue green brown purple cyan yellow

Well-balanced Long-tail distributed
* concept compositionality



Domain A

Domain B

Super-CLEVR

Visual
Complexity
easy middle hard
- redugdancy “What color is the bus?”
Question standard “What color is the large
Redundancy 2
+ redundancy b\llﬁﬁat color is the large bus behind the cyan
_________________________ ca.r?.”__________________________
concept > lins - Il.
Distribution Ml .
unbalanced
Concept -
Compositionality




Five models are studied

~* FILM
two-stream feature merging method

* mDETR

- pretrained transformer model

non-modular<

"« NSCL

neural modular method

* NSVQA

neural modular method

* Probabilistic NSVQA

\ our method

modular <




Recall Neural-Symbolic VOA (NSVQA)

(a) Input Image (b) Object Segments (c) Abstract Scene Representation
ID Size Shape  Material Color X y z
1 Small Cube Metal Purple -0.45 -1.10 035
Mask
= R-CNN Large Cube Metal Green 3.83 -0.04 0.70

—

2

3 Large Cube Metal Green -3.20 0.63 0.70
4  Small Cylinder Rubber Purple 0.75 1.31 0.35
5  Large Cube Metal Green 1.58 -1.60 0.70

A 4

[ J [ ] [ ] [ ]
I Neural Scene Parsing___jDeterministic Execution
II. Neural Question Parsing II1. Symbolic Program Execution
(d) Question (e) Program 1. filter_shape 3. filter_shape
LSTM |—> 1. filter shape(scene, cylinder) 2. relate 4. filter_size 5. count
LSTM . i ID Si Sh ID Si
How many cubes that i = 2. relate(behind) mil lpe = An .3
are behind the cylinder —»| oo "0 —) 3. filter shape(scene, cube) — L B Libs o . e SWerL
are large? ) ) 2 Large Cube 3 Large
—> 4. filter size(scene, large) R 5 Large
ILSWl —> 5. count(scene) 5  Large Cube

Important — not emphasized in their paper — the training is modular. The
language and the vision components are trained separately. No joint training.

Yi, Kexin, et al. "Neural-symbolic vga: Disentangling reasoning from vision and language understanding." NeurlPS 2018.



Prob-NSVQA considers the confidence of the

scene parser predictions.

* We introduce probabilities to Prob-NSVQA. E.g., the vision modules
output the probabilities that they have detected and classified an

object.
* Given an image containing n obiects, we maintain a vector of probs:

p = [p,p°...,p"]
o filteridgentitier |attribute] (e.g. filtercoior|red))

: : k k k
e.g. for the filter operation we set P =D * Pyiiribute



Super-CLEVR is harder than CLEVR (I.1.D. testing)

Random _I35.52 mm= CLEVR
ww Super-CLEVR
y—
CNN+LSTM _I5ﬂ.23
o S N
0 20 40 60 80 10

0
accuracy (%)



Out-of-domain testing: Complete Results

| FiLM | mDETR | NSCL | NSVQA | ProbNSVQA
Visual Complexity

| easy mid hard | easy mid hard | easy mid hard | easy mid hard | easy mid hard
easy | 59.96 5395 50.66 | 9336 84.30 8297 | 95.13 9231 90.81 | 95.19 94.19 94.09 | 96.76 95.98 96.37
mid | 57.41 5328 50.18 | 83.34 8236 81.27 ‘ 845 89.10 86.33 | 8199 9280 93.78 | 86.25 95.76 95.11
hard | 5595 53.11 5047 | 79.71 79.94 80.71 ‘ 76.85 78.66 85.08 | 73.11 79.71 92.65 | 79.81 86.47 95.36

Question Redundancy

| rd- rd rd+ | rd- rd  rd+ | rd- rd  rd+ | rd- rd rd+ | rd- rd rd+
rd- 5142 5254 53.51 | 83.94 80.37 66.28 ‘ 88.64 88.82 90.33 | - 92.98 - - 95.71 -
rd 50.39 53.28 54.78 | 82.77 82.36 70.36 ‘ 88.45 89.10 9145 | - 92.80 - - 95.76 -
rd+ 46.14 5230 7147 | 7848 B84.05 90.42 ‘ 87.94 88.34 91.16 | - 92.69 - - 05.73 -

Concept Distribution

| bal st long | bal slt long | bal slt long | bal slt long | bal slt long
bal 50.47 53.04 5435 | 80.71 75.79 7454 | 85.08 8379 75.10 | 92.65 90.82 83.74 | 9536 94.89 89.88
long | 49.43 5475 62.96 | 79.06 80.29 90.66  85.33 8942 91.10 | 92.73 93.38 92.53 | 96.31 9632 95.25
head | 48.60 58.06 61.60 | 80.75 79.60 87.46  84.58 88.39 90.19 | 93.87 94.82 9248 | 9642 96.80 95.92
tail 51.80 48.70 50.08 | 81.50 70.88 6094 | 86.10 8027 6055 | 90.26 89.20 7532 | 94.08 09320 82.68
oppo | 49.06 4893 46.68 | 79.13 68.37 5698 | 85.07 77.86 55.14 | 91.22 88.65 7132 | 95.76 94.09 79.74

Concept Compositionality

| 00 co-l co2 | c00 co-l co2 | co0 co-l co2 | co-0 co-l co2 | co0 col co-2
co-0 | 53.28 57.00 56.1 | 8336 77.03 8243 | 89.1 8252 83.77 | 92.80 90.11 091.59 | 95.76 94.02 95.12
co-1 | 5241 60.57 56.67 | 79.46 82.45 83.93 ‘ 78.89 87.18 842 | 78.74 89.99 90.67 | 87.12 94.53 94.78
co-2 | 5296 57.37 60.53 | 80.03 77.41 87.24 ‘ 78.40 8155 88.84 | 77.85 89.28 92.23 | 87.19 9349 95.61




Out-of-Domain Testing: Summary Results

Visual Redund. Dist. Comp.

FilLM 4.03 21.33  28.46 9.04
mDETR 9.81 19.05 36.34 9.45
NSCL 15.57 0.92 37.44 15.40
NSVQA 17.48 0.08 20.92 11.44
NSVQA +Prob  12.88 0.08 13.72 7.00

Table 2. Relative Degrade under domain shifts, i.e. the percentage

of accuracy decrease when the model is tested with domain that
differs with training. Lower RD means better robustness.



Findings: comparison between models

Visual |Redund.| Dist. Comp.
FiLM 4.03 21.33 | 28.46 9.04
mDETR 9.81 19.05] 36.34 9.45
NSCL 15.57 092 37.44 15.40
NSVQA 17.48 0.08 | 20.92 11.44
NSVQA +Prob  12.88 0.08 | 13.72 7.00

* Neural symbolic methods are robust on question redundancy
Question parsing is easy, and trained separately



Findings: comparison between models

Visual |Redund.| Dist. Comp.
FiLM 4.03 21.33 | 28.46 9.04
mDETR 9.81 19.05] 36.34 9.45
NSCL 15.57 092 37.44 15.40
NSVQA 17.48 0.08 | 20.92 11.44
NSVQA +Prob  12.88 0.08 | 13.72 7.00

* Neural symbolic methods are robust on question redundancy

* Neural symbolic methods are only robust on question redundancy

Why? |

Maybe we need not only modular network, but also modular training



Findings: comparison between models

Visual Redund. Dist. Comp.

FiLM 4.03 21.33  28.46 9.04
mDETR 9.81 19.05 36.34 9.45
NSCL 15.57 0.92 37.44 15.40
NSVQA 17.48 0.08 20.92 11.44
NSVQA +Prob  12.88 0.08 13.72 7.00

* P-NSVQA is the most robust on 3 out of 4 factors
* Probablistic + symbolic -> best model



Findings: comparison between models

Visual | Redund. Dist. Comp.
FiLM 4.03 21.33  28.46 9.04
mDETR 9.81 19.05 36.34 9.45
NSCL 15.57 092 3744 15.40
NSVQA 17.48 0.08 20.92 11.44
NSVQA + Prob | 12.88 0.08 13.72 7.00

* On visual complexity, end-to-end methods are more robust
MDETR has a more powerful visual component



Will the findings generalize to real data?

For question redundancy:

-1%

-3%

o
O 5%
o —-mMDETR
o 1%
(T
C o NSCL
Q
< -11% NSVQA
13% P-NSVQA
e
-15% e
0% 14% 32% 70% 91% 100%

Percentage of redundancy removed

Progressively remove the redundant operations from questions in GQA dataset



Extension: Super-CLEVR with
Parts, 3D Pose, Occlusion



Part questions

Objects from UDA-Part dataset
Object with parts:

%n&

bike motorcycle

Texture: dotted, checkered, stripped, none

Color: green, gray, brown, yellow, red, purple, cyan, blue Q: What is the color of the front wheel of the small purple bicycle?
Size: large, small

. H H . ?
Material: rubber, metal Q: What is the material of the yellow object that has a blue part:

Q: What is the color of the front wheel that belongs to the same
Figure 2. Super-CLEVR contains 21 vehicle models belonging to object as the cyan seat?
5 categories, with controllable attributes.

UDA-Part dataset: Learning Part Segmentation through Unsupervised Domain Adaptation from Synthetic Vehicles. Qing Liu
et al. CVPR 2022



Pose questions

Q: Which direction is the tiny blue school bus facing?
Q: What is the brown thing facing in the same direction as the tiny blue school bus?
Q: Is the plane and the tiny blue school bus facing in the opposite direction?



Occlusion questions

Q: What is the size of the purple object that is occluded?
Q: What part of the small rubber object is occluded?



Why part, pose, occlusion?

3D knowledge is necessary to answer those questions.




Introduce 3D Pose estimation in VQA

NeMo (Wang el at. ICLR 2021)
* A generative pose estimation model
* Robust to occlusion

Vertex Feature Vectors

Render
F '
| |

I Compare

NeMo Render-and-Compare: Feature Map



Ongoing results

mDETR 41.52 71.76 64.99 44.60
P-NSVQA with FRCNN - 87.78
P-NSVQA with NeMO - 86.40
P-NSVQA with NeMO & GT 91.34

Table being completed.



Towards Generalizable Visual Reasoning

Calibrating concepts and operations
and solutions

Synthetic-real gaps,

IIIIIIIII

Unequal importance of operations

IIIIIIIIIIIIIIIIII
Y N B .

select(boy)

L filter(little)

— relate(table

, front) — | query(hold)

Super-CLEVR

systematically study domain robustness

Domain shift factors 3D-aware VQA
e Visual complexity * Object parts
* Question redundancy * 3D poses

e Concept distribution * Occlusions

Concept compositionality

Probabilistic + Symbolic = robust model

Future direction?

SS-CLEVR — more
Realistic images.

Adversarial Testing

Stronger Vision
Modules.



Thanks! Questions?

zIil110@jhu.edu



mailto:zli110@jhu.edu
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