Transformers for Vision



Transformer

* The de facto neural architecture of many applications
* GPT: generative pre-training Transformer
* Gemini: multi-modal LLMs
* Computer vision
* Speech recognition
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Attention

* Attention compute a weighted average of hidden state vectors.

* Formally:
* Given N k-dimensional input vector x! ... x¥and output vector y* ...y

* Output ylisa weighted average of input vector; w;; is the attention weight
from position i over x/

i _ vN '
© Yyt = Xjmgwix!
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Formulation of Self-attention

e Given N k-dimensional input vector x? ... x¥and output vector y1 ... y¥

* Conventional projection layer:
* Output y'is a weighted average of input vector

i — VN -
*YE = Ao wijx!

* Self-attention: self-dependent
* The weight w;; depends on input itself xJ

o ! — i ..]
Wij—zkxkx

exp(w;)
Zj eXp(Wi,j)

* Followed by Softmax normalization: w;; =



Self-attention with Query, Key, Value

* Self-attention: The weight w;; depends on input itself

o ! i..J
Wij—zkxkx

* the input x! is to matched the input x/
* More flexible version: add learnable parameters
* Linear projection layer with learnable weight matrix W € R**¥
* Query: Qi = qui ,to match others
* Key: K! = Wy, x!, to be matched
e Value: V! = W, x!



Self-attention with Query, Key, Value

* Q, K,V are linearly projected
e Query: Q! = qui
* Key: K' = Wy x*
e Value: V! = W, x!
» Compute attention weight based on Q' and K
4. — _SPEKYH
J X exp(Q'KT)




Self-attention with Query, Key, Value

» Compute attention weight based on Q' and K
.4 _ _exp(Q'KYH
U % exp(QIKY)

* Aggregated with value vector V

* The new output for i-th position depends on the attention weights and value
vectors of all input positions j

. yi — Z}jzlA]l:Vj



Scaled Dot-product Attention
1

e Scale factor vVd normalizes the dot product values _MatMul . ]
OKT, preventing their variance from becoming overly [ﬁfm

large. T :
* Scale dot-product: 4 = Softmax(% | Mask (opt) |
* Matrix Multiplication: y = AV [[Scate ]
[ vatmul ]
tt
Q KV

[1] Vaswani A, et al. Attention is all you need[J]. NeurIPS, 2017



scaled dot — product: Q: query (to match others)
4. — QK" K: key (to be matched)
1= 5

' Vd V:value
x: input vector before projection
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Quadratic complexity

T
* Attention(Q, K, V) =Softmax (Qi) 4

Vd
« Complexity: 0(n? - d)
* n=sequence length, d = hidden dimension



Cross-attention

* Given two different input vector x and m

* Input to Cross-attention
* Query: Q' = Wyx'
* Key: K' = W,ym*
* Valve: V't = W,m*
* Source vector x is attended to target vector m

» Compute cross-attention weight based on Q' and K
. 4. — _SXPQKH
U ¥ exp(Qk)




Rethink Cross-attention as Feature Clustering

* input vector x € R¥*4 (Q" = W, x') is the feature centroids with N
centroids

* input vector m € REW*4 (KJ = W, m/, V! = W, m" ) is the pixel features
* Cross-attention weight v.s. Soft assignment based on feature distance
__exp(QiK))
b 2 exp(Q'K')
* Value aggregation v.s. Centroid update:

. O = yzlA]i-Vj

A




Positional encoding

 Motivation:

* While the attention mechanism is powerful, it doesn't inherently capture the
order of elements within the sequence.

* Inlanguage, the order of words is crucial for meaning. For example, "The cat
sat on the mat" has a different meaning than "The mat sat on the cat.”

* Similarly, in computer vision, the permutation of image pixels matters.



Positional encoding

_ Lt
: Ty =
* append t to the input ' { f ]
* Thisis not a great idea, because absolute position is less important than
relative position

* we want to represent position in a way that tokens with similar relative
position have similar positional encoding

* More advanced positional encoding (e.g., frequency-based, learning-
based, relative positional encoding) are not discussed in this lecture.



Positional encoding
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Multi-head self-attention

* Run h attention models in parallel on
top of different linearly projected
versions of Q, K, V; concatenate and
linearly project the results

* |Intuition: enables model to attend to
different kinds of information at
different positions

[1] Vaswani, et al. Attention is all you need. NeurlPS, 2017
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Transtormer block

* A Transformer Is a sequence of transformer
blocks

* Vaswani et al.:
* 12 blocks, 512 embedding dimension, 6 attention heads

- Introduced before

* Add & Norm: residual connection followed by
layer normalization

* Feedforward (Multi-layer perceptron): two linear
layers with RelLUs in between, applied
Independently to each vector

* Attention Is the only interaction between inputs

[1] Vaswani, et al. Attention is all you need. NeurlPS, 2017
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Transformers

Output
Probabilities
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Add & Norm
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[1] Vaswani, et al. Attention is all you need. NeurlPS, 2017
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Transformers

Output
Probabilities
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Embedding Embedding
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[1] Vaswani, et al. Attention is all you need. NeurlPS, 2017
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Transformers

Output
Probabilities

Transformer Encoder:
o Self-attention
1 Serves as strong feature Encoder

extracting/enhancing p ——
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[1] Vaswani, et al. Attention is all you need. NeurlPS, 2017
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Transformers

Output
Probabilities

Transformer Encoder:
2 Vision Transformer (ViT)

Vision Transformer (ViT) Encoder
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[1] Attention Is All You Need. NeurlPS 2017.

[2] ViT: Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR 2021.
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Transformers
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Transformers
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[1] Vaswani, et al. Attention is all you need. NeurlPS, 2017

Transformer Decoder:
a Cross-attention
1 Serves as a bridge for
sequence-to-sequence
translation
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Transformers

> Extracting pixel-level representation > Converting to object-level representation

Transformer Encoder: Transformer Decoder:

Decoder

1 Self-attention —n 1 Cross-attention
1 Serves as strong feature Encoder “Feed 1 Serves as a bridge for
extracting/enhancing p |0 sequence-to-sequence
f—>| Add & Norm | = .
modules. = tention translation
Forward JED) Nx
Nx : Add &_Norm
f—>| Add & Norm | VR
Multi-Head Multi-Head
Attention Attention
[} ) t
e VAR —“))
cncoding (9 & Encoding
Input Output
Embedding Embedding
I I
Inputs Outputs
(shifted right)

[1] Vaswani, et al. Attention is all you need. NeurlPS, 2017
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Vision Transformers (VITs)

VIT: the pioneer of Transformer architectures for vision

MLP
Head

Ve

Transformer Encoder

|
@6 o)l 8)

Linear Projection of Flattened Patches

1 v~
ol o L] |__
4 5]6, z 1 | “gig;.—*:“”

[1] Dosovitskiy, et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021



Vision Transtormers (VITs)



ViT: overview

* Divide an input image into 196 (14x14) small images of size (16x16)
* Treat it as embedding in NLP

* Use it as an input for traditional transformer encoder (like in BERT)
* Use 12 transformer layers (Norm, Multi-head attention, etc.)

* the last output, use it as input for Dense Layer with 1000

* you have a classification model

[1] Dosovitskiy, et al. ViT: An image is worth 16x16 words: Transformers for image recognition at
scale. ICLR 2021



ViT: performance comparison to CNN

JFT-300M is an
internal Google
dataset with 300M
labeled images

If you pretrain on
JFT and finetune on
ImageNet, large
ViTs outperform
large ResNets

o0 o0 O
(et ) =
PR B TR I S R T

ImageNet Topl Accuracy [%]
~J
N

70 -

. B = Base
L = Large
H = Huge
ResNets ViT-L/32 | /32,/16, /14 is patch
ViT-B/32 ViT-L/16 size; smaller patch
- : size is a bigger model
ViT-B/16 ViT-H/14

(more patches)

ImageNet

ImageNet-21k JFT-300M
Pre-training dataset



ViT: strength and weakness

* Strength:
* Long-range interaction via global attention
* Strong performance/scalability with large scale of data

* Weakness:
* Quadratic computational complexity
* Lacking locality
* Lacking low-level details due to large patch size (e.g., 16x16)



Key difference between Visual and Text Signals

multi-scale locality translation invariance
(scale invariance) (spatial smoothness)

| am a fat cat. | like the green grass. | am a fat cat.
| am a fat fat cat cat. (invalid) Fat cat is me.

No scale variation No spatial smoothness Sensitive to absolute locations



Hierarchical Vision Transformer

* Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
* Multi-scale (hierarchical) feature map
* Use shifted window to get image patches

p=. P
& 16 %
// //
J— . PochFeature bin More friendly to visual signals
4 78x multi-scale / locality / translation invariance

Computation scope
4 x of self-attention



Hybrid CNN-Transformer Model

* Formulation:

* Micro-level Hybrid Model

 Each basic block is designed with convolutional layer and self-attention layers
* The model stack with several basic blocks repeatedly

* Macro-level Hybrid Model

* Each basic block is either pure CNN block or pure Transformer block
* The model starts with few CNN blocks
* The model further stacks several Transformer blocks

* Strength
* Preserve local information due to CNN
* Preserve translation invariance due to CNN
* Efficient learning of spatial hierarchy due to CNN
* Enable global interaction due to Transformer



Examples

* Hybrid Transformer for visual recognition: Yang et al.,, MOAT, ICLR 2023
* Hybrid Transformer for medical Al: Chen et al., TransUNet, arXiv 2021
* Hybrid Transformer for vision-language: Chen et al., ViTamin, CVPR 2024

[1] Yang, et al. Moat: Alternating mobile convolution and attention brings strong vision models ICLR 2023
[2] Chen, et al. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306, 2021.
[3]1 Chen, et al. Design scalable vision models in the vision-language era, CVPR 2024



Hybrid Transformer for Visual Recognition

gelu

conv 1x1 [

(cow 1xi, 45 ] [zl
‘ =k [ self-attention ]
[ conv 1x1, ¢ ] :

(a) MBConv block (b) Transformer block (c) MOAT block

Figure 1: Block comparison. (a) The MBConv block (Sandler et al., 2018) employs the inverted bottleneck
design with depthwise convolution and squeeze-and-excitation (Hu et al., 2018) applied to the expanded features.
(b) The Transformer block (Vaswani et al., 2017) consists of a self-attention module and a MLP module. (c) The
proposed MOAT block effectively combines them. The illustration assumes the input tensor has channels c.

[1] Yang, et al. Moat: Alternating mobile convolution and attention brings strong vision models ICLR 2023

TICLR2023

. Ya n et al.
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¥ T ¥
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Embedded Sequence
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Feature Concatenation
[2] Chen, et al. Transunet: Transformers make strong encoders for medical image segmentation. arxX

iv preprint arXiv:2102.04306, 2021

Hybrid Transformer + UNet: TransUNet

‘-»
\ v /2
MSA L | CNN :¢/
‘\‘ :/“ -
' | | Hidden Feature |
ama
Layer
Norm

= Conv3x3, ReLU

= Segmentation head

 Chen et al
2021



Hybrid Transformer for Vision-Language

=

I, T,
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{ Text Transformer J

(a) Proposed Vision Model ViTamin

X H w H w o H W HW 1
Cx =X = CXZXT ZLXEXE 6CXW : — T I,T,
: — I, I,T,
MBConv Transformer :
Block J . Iy Iz T,
: , SR IN IN T,
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(b) Contrastive Language-Image Pretraining

 Chenetal.
CVPR 2024

Figure 3. Overview of ViTamin architecture. (a) ViTamin begins with a convolutional stem, followed by Mobile Convolution Blocks
(MBConv) in stage 1 and 2, and Transformer Blocks (TFB) in stage 3. The 2D input to the stage 3 is flatten to 1D. For the macro-level
designs, the three-stage layout generates the final feature map with output stride 16, similar to ViT/16 [31]. We set channels sizes for
the three stages to be (C, 2C, 6C'). For the micro-level designs, the employed MBConv-LN modifies MBConv [115] by using a single
LayerNorm [4]. TFB-GeGLU upgrades TFB’s FFNs [131] (Feed-Forward Networks) with GELU Gated Linear Units [117]. (b) In the
CLIP framework, given N image-text pairs, the vision model’s output /; is learned to align with its corresponding text Transformer’s

output 7;. Our text Transformers are the same as OpenCLIP [62]. +: Addition. *: Multiplication.

[1] Chen, et al. Design scalable vision models in the vision-language era, CVPR 2024



summary

* Transformers consist of several Transformer blocks with multi-
nead self-attention layer and feedtforward layers.

* [t 1s highly scalable and highly parallelizable

* Faster training, larger models, better performance across vision
and language tasks

* Good capability in vision tasks.




Dual-Path Transformer: MaX-DeepLab

e Dual Path: Pixel Path + Memory Path

o Memory to store global information

N Masks:Nx%x% N Classes:
NxC

e Self-attention: &5 |ooschair -

o  P2P: Pixel-to-pixel self-attention

1/4

= Both query and key are pixel vector itself s !
. e, (e - A
o M2M: Memory-to-memory self-attention {Lx =\ Transformer ¢! [ P2M ][sz&mzmj
| Stacked Attention Attention

1 Decoder

= Both query and key are memory itself

Dual-Path
Transformer

6 P2P Axial-
Memory 14 Attention

e Cross-attention e

o P2M: Pixel-to-memory cross-attention

. . . Pixel emor ixe emor
= Query is pixel, key is memory patn G Moath " gl i e
HXW B s 2
o MzP Memory_to_plxel Cross_atte ntlon (a) Overview of MaX-DeepLab (b) Dual-path transformer block

= Queryis memory, key is pixel

Wang, et al. MaX-Deeplab: End-to-End Panoptic Segmentation With Mask Transformers. CVPR 2021.



Dual-Path Transformer: MaX-DeepLab

e Dual Path: Pixel Path + Memory Path

e Prediction: N pairs of object class pdass € R'and mask
p}nask e REW

o Memory is decoded to N object class

o  The dot product of Memory and Pixel result in N object

masks

H W
N Masks.NxeT

8 -

N Classes:
NxC

Dog Chair - - -

V2T

E LXx
:Stacked
! Decoder

H W

pxH o W CQpN*D
* %

Dual-Path
Transformer

Dual-Path
Transformer

{con] [

- ::e

P2M M2P & M2M
Attention Attentlon
/

Memory

5| O p2p Axial-

Memory
Path

Attention

(P)ixel (M)emory
Path Path

(a) Overview of MaX-DeepLab

Wang, et al. MaX-Deeplab: End-to-End Panoptic Segmentation With Mask Transformers. CVPR 2021.

(b) Dual-path transformer block




Hungarian Matching for Prediction-Groundtruth Association

e Goal: match the grountruth y; to a prediction p;

o Ground-truth: M pairs of object class y£'#* € R and mask y"%k € RHW

o Prediction: N pairs of object class p{'*** € R'and mask pj**** € RAW

u Memory is decoded to N object class

m  Thedot product of Memory and Pixel result in N object masks

e Example:
o Successful match: y; ={dog, ML }; p; ={dog, M }
m Classification accuracy =1, and mask loU =1

o  Failed match: y; ={dog, ;8 }; pj ={dog, # ¥} ->low mask loU

m Classification accuracy = 1, but mask loU = 0.1

o  Failed match: y; ={dog, 3 }; p; = {cat, ] 3 ‘}-> wrong classification

m Mask loU=1, but classification accuracy=0



Hungarian Matching for Prediction-Groundtruth Association

e Goal: match the grountruth y; to a prediction p;

o Ground-truth: M pairs of object class y£'**S and mask Y
o Prediction: N pairs of object class pf'*** and mask p]****

] Memory is decoded to N object class

m  Thedot product of Memory and Pixel result in N object masks

e Define cost matrix C of size M XN
o Ci,j — _accuracy(yiclass,p]qlass) _ IOU(yimask’p;nask)

e Linear assignment problem to do association

o  Formally, the task is to find a injection f:{1,2,..m} —:{1,2,..n} that minimizes

the total assignment cost: Minimize Y2, C; r(i

mask

N Masks:Nx%x% N Classes:
NxC
‘, $ 1| .- |DogcChair---

. 1/1(,(
|}
:I,><

: Stacked
i Decoder

Dual-Path
Transformer :

Dual-Path
Transformer
|

Memory

Memory
Path
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Cross-attention for Stereo Matching / Fusion

e The context feature of left and right images are fused with cross-attention

e Query is left context features and key is the right context feature, or vice verse

e Reference to context-enhanced stereo Transformer [1] to estimate disparity

M; Context
Information
LayerNorm

Cross-Attention]
LayerNorm ]

‘-’[ Axial-Attention ]

Left Context Right Context
Feature Feature

(a) M1

M, Context
Information
LayerNorm

Cross-Attention]
LayerNorm ]

‘-b[ Axial- Attentlon]

|

Left Context Right Context
Feature Feature

(b) M2

M; Context
Information

FN £

]

LayerNorm

)

Cross-Attention]

LayerNorm

)

L Axial-Attention]

|

Left Context Right Context
Feature Feature

(c) M3

[1] Guo, et al. Context-enhanced stereo transformer ECCV 2022
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Context Enhanced Stereo Transformer

Context __
| Pooling I Enhanced Path . — .
£ . Final Disparity
R > g g |Raw Disparity | % | & Occlusion
o = g & Occlusion | .g 5
z l-1 20 ) s o <
£ 7 —H 2P E > | P €
- = B — >
3 = 2 g 21 | 8
L = = = o) 5
e
©l [o
Main o N | S— - =
— | Matching Path
~ . —N T g
CSTR Layer (N-1)x CSTR Layer

Fig. 3. CSTR consists of two main components:(1) Context Enhanced Path that ex-
tracts long-range context information in low resolution feature. (2) Main Matching
Path that use Axial-Attention to enhance context and Cross-Attention to compute
raw disparity. Then a learnable Up Sampling block up restore the original scale of
disparity and Context Adjustment block refines the disparity with context information

across epipolar lines conditioned on the left image.

[1] Guo, et al. Context-enhanced stereo transformer ECCV 2022
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

Transformer decoder (cross-attention) is crucial in terms of an end-to-end
problem formulation:

___________________________________________________ e —— . H W
1 decoder ' prediction heads | N Masks:Nx7x 7| N Classes:
| o i ] 44
! | NxC
O [ class, ‘ ‘ 1| |Dogchair---
box
no
transformer ! object s 9
decoder I class, & il
i: box &
1 K
N no
‘ E‘ &l ‘ :: i }_' object A - 6 9
object queries h /116 Dual-Path \
""""""""""""""""" | LX Transformer /! p2m | M2p & M2m
I Stacked 1/8 Y Attention J{  Attention
1Decoder Y I
. i kK i A
transformer module T segmentation module : 1/4 iy AL
¥ § 99 0 | W [eon] A
| transformer e N class predictions| | Semantic segmentation | " B patn
decoder m 0 0 @ | inference only i Transformer
ﬁ ﬁ 6 E‘ N mask embeddings Nx@+1) I 1/8 6 P2P Axia
; semantic
N queries B B 0 @ ) o ; Memory | 3 Attentiorf
pixel-level module binary mask loss segmentation ||
gmask Cg XN l ! M
5 KxHxW emor P)ixel M
pixel Epixet N mask predictions Path d ( P)ath ( LZI;:]OW
decoder m = ocwf;
NXHXW i
image features F per-pixel embeddings (a) Overview of MaX-DeepLab (b) Dual-path transformer block

Carion, et al. End-to-end object detection with transformers. ECCV 2020.
Wang, et al. MaX-Deeplab: End-to-End Panoptic Segmentation With Mask Transformers. CVPR 2021.
Cheng., et al. Per-Pixel Classification is Not All You Need for Semantic Segmentation. NeurlPS 2021.
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

Common pipeline:

Yu., et al. CMT-Deeplab: Clustering Mask Transformers for Panoptic Segmentation. CVPR 2022, Oral.
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

Common pipeline:

Image feature extraction through a backbone

Yu, et al. CMT-Deeplab: Clustering Mask Transformers for Panoptic Segmentation. CVPR 2022, Oral.
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

Common pipeline:

Image feature extraction through a backbone

Yu, et al. CMT-Deeplab: Clustering Mask Transformers for Panoptic Segmentation. CVPR 2022, Oral.
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

Common pipeline:

Image feature extraction through a backbone

Image feature enhancement through transformer encoder (self-attention)

Yu, et al. CMT-Deeplab: Clustering Mask Transformers for Panoptic Segmentation. CVPR 2022, Oral.



CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

Common pipeline:

Image feature extraction through a backbone

Image feature enhancement through transformer encoder (self-attention)

learnable object queries aggreate pixel features through transformer
decoder (cross-attention) -> box/mask embedding

Yu, et al. CMT-Deeplab: Clustering Mask Transformers for Panoptic Segmentation. CVPR 2022, Oral.



CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

Common pipeline:

Image feature extraction through a backbone

Image feature enhancement through transformer encoder (self-attention)

learnable object queries aggreate pixel features through transformer
decoder (cross-attention) -> box/mask embedding

huangarian matching for supervision assignments

Yu, et al. CMT-Deeplab: Clustering Mask Transformers for Panoptic Segmentation. CVPR 2022, Oral.



CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

Common pipeline:

Image feature extraction through a backbone

Image feature enhancement through transformer encoder (self-attention)

learnable object queries aggreate pixel features through transformer
decoder (cross-attention) -> box/mask embedding

huangarian matching for supervision assignments

Yu, et al. CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation. CVPR 2022, Oral.
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

Cross-Attention:

N c p\T p
C C-I—so%r‘}‘lfax(Q x (K?)") x VP,

Yu, et al. CMT-Deeplab: Clustering Mask Transformers for Panoptic Segmentation. CVPR 2022, Oral.
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

Cross-Attention:

Affinity logits are computed, with linear projections, between queries (Q°) and
pixels (KP)

N "0O° « (KP\T, p
C C—I—so%r&l/axl(Q x (KP?) >><V,

Yu, et al. CMT-Deeplab: Clustering Mask Transformers for Panoptic Segmentation. CVPR 2022, Oral.
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

Cross-Attention:

A spatial-wise (HW) softmax Is applied to convert the affinity logits map to
attention weights

N : (O° p\T p
C C—I_'_S?fig?‘/‘l/_ai(.KQ x (K?)") x VP,

Yu, et al. CMT-Deeplab: Clustering Mask Transformers for Panoptic Segmentation. CVPR 2022, Oral.
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

Cross-Attention:

The attentior E
linear project € =C+ SO%I%}@LX(QC X (Kp)T): X Vpa:

[

|

|

|

1
<
@
—'1

@D

QD
—

-

-

D

w
3
—
>

Yu, et al. CMT-Deeplab: Clustering Mask Transformers for Panoptic Segmentation. CVPR 2022, Oral.
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

Cross-Attention:

| , p p
C-_C_—_I—Jso%r&l/aX(Q x (KP)Y) x VP,

- The update of queries Is added In a residual manner.

Yu, et al. CMT-Deeplab: Clustering Mask Transformers for Panoptic Segmentation. CVPR 2022, Oral.
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

Cross-Attention:

N c p\T p
C C—I—so%%lfax(Q x (K?)") x VP,

As a result, the queries will be updated and converted to correspond to a specific
object In prediction.

Yu, et al. CMT-Deeplab: Clustering Mask Transformers for Panoptic Segmentation. CVPR 2022, Oral.

59



CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

Yu, et al. CMT-Deeplab: Clustering Mask Transformers for Panoptic Segmentation. CVPR 2022, Oral.
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

- Inconsistency of using object queries for mask prediction and updating object
queries '

mask Z = softmax(F x C1),
ot R S
prediction: Y
mask probs affinity logits

Yu, et al. CMT-Deeplab: Clustering Mask Transformers for Panoptic Segmentation. CVPR 2022, Oral.
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

- Inconsistency of using object queries for mask prediction and updating object

queries . . [ -I-- ;

mask prediction: Z = softmax(F x C7),

. . ~ I rAe p\T p
updaz‘/ng' opject € = C fsoltmax(Q” x (K7) ") x V7.
queries:

Yu, et al. CMT-Deeplab: Clustering Mask Transformers for Panoptic Segmentation. CVPR 2022, Oral.
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

person tree

- Sparse attentic

MaX-Deeplab

Yu, et al. CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation. CVPR 2022, Oral.
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

p p 1
C —|C—|—SO%1{141/6LX(Q x (KP)') x V !

Cross-attention -> a clustering process
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

UL r= -

I 1| C: p\T p
C C+SO%%}8JX{L9_|X (KP)") x VP,

|__J l-_J

object queries -> cluster centers
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

- o o EE EE o o O e e e e e

p p
C = C+.SO%1{141/ax(Q x (KP)Y) x VP,

attention map -> clustering assignment
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

F-—---

5y " T | 5 !
C C+SO%1%1/ax(Q x (KP?) )'L>i_V__’:

updating object queries -> updating clustering center



CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

o= c P\T p
C—C+SO%1{141/ax(Q x (K?)") x VP,

Machine Translation: Each object query corresponds to a word In target
language, and it will be assigned to one most affiliated word In source
language as Its update

68



CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

o= c p\T p
C—C+SO%%1/ax(Q x (K?)") x VP,

Each object query corresponds to an object In
prediction, and it will be assigned to one most affiliated pixel as its update



CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

o= c p\T p
C—C+Sog_t[1{141/ax(Q x (K?)") x VP,

Each object query corresponds to an object In

prediction, and it will be ascs)lgjggtcg ggsg)gnneecrlnt%slglg)a(fefwgted pixel as its update



CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

—————— 1
A

- : c p\T p
C—C+ISO%1%1/axéQ x (K?)") x VP,

Each object query corresponds to an object In
prediction, and it will be assigned to one most affiliated pixel as its update



CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

~ c o (P T\ . x7p
—G—G—b—lse-ﬁa-ma*{-Ql e

~

soft{nax(K” x (Q°)™HT x VP,
N I

Q
|

@
_I_

Fanoptic Segmentation. Each pixel will choose one most affiliated object,
all assigned pixels will serve as an update to corresponding object query
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

cluster centers

~ image

_ ‘plxel feature

® © 00 0 O
o
o )
5 assignment step
= } 2
L —
update ste
- N P ; P Y
panoptic mask pixel-cluster assignment . X N

assignment step
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

A~

F
O0®+0O
updated pixel feature  updated cluster center
HXTXD N XD
[ pixel-cluster update step ]
A A T
Z

pixel-cluster assignment
HXW xN

pixel-cluster assignment step J

L1 1 t t 1 |
K| | RP| | VP Q°| |@°| |ve
W ‘\T/’
F 00®~0 s
pixel feature cluster center pixel-cluster affinity
HXW XD N XD HXW XN
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

- .
l ] i
I 1 ! HW x D
I THW x Ni ;
l 1 E
l 7 ' E B
I 1 : F
l 5 ' !
| ! - A
I softmax :
| [Lsoftmax ] ¢ i
| _HWXN [ :
l ‘ | F e+
| S i+ i Y/ i T aw xp
| A :
| L i X
l HW x N '
| 1 : HW x N W D
I a ‘. :
1
I HW x z/\v x| | Ve
l - ~
! —~ A : T
| KP| Q€ : i Z
| 1
| Tt 5
| | : t
1
I pixel-cluster assignment} cluster update i pixel update

-_—e e e e e e e e =)
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

|
T i HW x D
HW x N i
!
7 |
i F
1
7y |
| A
l softmax i
A
HW x N %
| e
S i+ i T aw xp
A !
| X
HW x N i
: HW x N N x D
3 | / N
HW x z/\v x D i Ve
= - )
KP| |Q° | Z !
I 1 i ;
|
pixel-cluster assignment | pixel update



CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

THWXN

HW X N

1

pixel-cluster assignment

S —® | 7z



CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

- Include coordinates into the clustering

- Improve instance discrimination loss in MaX-DeeplLab to pixel-wise contrastive
loss

Achanta., et al. SLIC Superpixels Compared to State-of-the-Art Superpixel Method. TPAMI.
Wang., et al. MaX-DeeplLab: End-to-End Panoptic Segmentation With Mask Transformers. CVPR 2021.
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CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

We build CMT-DeeplLab upon previous SOTA method MaX-Deeplab:

COCO Panoptic: Cityscapes
+4.2% val/ PQ Panoptic:
+4.4% test PQ +2.9% val/ PQ




CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

person person sheep sheep rediction

CMT-DeeplLab
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Summary

> A novel clustering view to better understand and design Transformer modules for
object-centric representation learning

> We introduce CMT-DeepLab, which unfies cross-attention and panoptic
segmentation from a clustering perspective



Overview

Extracting pixel-level
representation:

a  Vision Transformer (VIT)

~

Decoder
(—— \
Add & Norm
Feed
Encoder Forward
L
7 | ~\ Add & Norm
cociahioin Mutt-Head
Feed Attention
Forward JED)
\
Add & Norm
(—>| Add & Norm | R
Multi-Head Multi-Head
Attention Attention
A 2 At
C J (\ —

\L

Converting to object-level
representation:

a CMT-Deeplab [2]
(CVPR 22 Oral)

a2 kMaX-DeeplLab [3]
(ECCV 22)
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k-means Mask Transformer

Cross-attention:

N c p\T p
C C—I—so%r&l/ax(Q x (KP)") x VP,

Yu., et al. k-means Mask Transformer. ECCV 2022.
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k-means Mask Transformer

Cross-attention:

A

C = C + softmax(

Affinity logits
with linear
projections

HW

Q° x (K”)*

) X V¥,
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k-means Mask Transformer

Cross-attention:

Q° x (K”)*

C = C + softmax
HW
Affinity logits Spatial-wise
with linear —__| softmax for
projections attention
weight

) X V¥,
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k-means Mask Transformer

Cross-attention:

A

C = C +H softmax
HW

Q° x (KP))[x VP,

Affinity logits Spatial-wise

with linear ~__| softmaxfor | _—"

projections attention

weight

Retrieve update
values with linear
projections
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k-means Mask Transformer

Cross-attention:

Q° x (KP))[x VP,

C = C H{ softmax{
HW
Affinity logits Spatial-wise
with linear —__| softmax for
projections attention
weight

Retrieve update

- values with linear

projections

\

Residual
update of
object query
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k-means Mask Transformer

k-means clustering algorithm:

A = argmax(C x P"),
N

C:AXP,



k-means Mask Transformer

k-means clustering algorithm:

Affinity logits

A = argmax(
N

C:AXP,

C x Pt
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k-means Mask Transformer

k-means clustering algorithm:

C x Pt

A =largmax
N
C=A x P,

Affinity logits

Cluster-wise
argmax for
clustering

assignment
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k-means Mask Transformer

k-means clustering algorithm:

C x PY),

A =largmax
N
C =|A x P,

Affinity logits

Cluster-wise

argmax for | __—

clustering
assignment

Retrieve update
values
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k-means Mask Transformer

k-means clustering algorithm:

Affinity logits

\

A =largmax(|C x P1),
N
C =|A x P,
Cluster-wise Retri dat
argmax for | __— c rlevle Update
clustering values
assignment

Replace
cluster
centers
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k-means Mask Transformer

cross-attention v.s. k-means clustering algorithm:

Affinity logits
with linear
projections

\

Spatial-wise
softmax for
attention
welght

/’

Retrieve update
values with linear
projections

\

Affinity logits

Cluster-wise
argmax for
clustering

assignment

Retrieve update
values

\

Residual
update of
object query

Replace
cluster
centers
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k-means Mask Transformer

cross-attention v.s. k-means clustering algorithm:

Affinity logits
with linear

\

projections

Spatial-wise
softmax for
attention
welght

/’

Retrieve update
values with linear
projections

\

Affinity logits

Linear
projections

Cluster-wise
argmax for
clustering
assignment

Retrieve update
values

\

Residual
update of
object query

Replace
cluster
centers



k-means Mask Transformer

Cross-attention v.s. k-means clustering algorithm:

Affinity logits
with linear

\

projections

Spatial-wise
softmax for
attention
welght

/’

Retrieve update
values with linear
projections

\

Affinity logits

Linear
projections

Cluster-wise
argmax for
clustering
assignment

Retrieve update
values

\

Residual update

Residual
update of
object query

Replace
cluster
centers



k-means Mask Transformer

cross-attention v.s. k-means clustering algorithm:

Affinity logits
with linear
projections

\

Spatial-wise
softmax for
attention
welght

/’

Retrieve update
values with linear
projections

\

Cluster-wise

Retrieve update
values

\

Residual update

Affinity logits —,| argmax for
clustering
assignment
Linear
projections

Residual
update of
object query

Replace
cluster
centers

Cluster-wise argmax

V.S.

Spatial-wise softmax,,



k-means Mask Transformer

cross-attention v.s. k-means clustering algorithm:

Affinity logits
with linear
projections

\

Spatial-wise
softmax for
attention
welght

/’

Retrieve update
values with linear
projections

\

Cluster-wise

Retrieve update
values

\

Residual update

Affinity logits —,| argmax for
clustering
assignment
Linear
projections

Residual
update of
object query

Replace
cluster
centers

Cluster-wise

argmax

V.S.

Spatial-wise
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k-means Mask Transformer

A simple change for k-means cross-attention:

(Q° x (KP)") x V7,

C = C +|softmax
HW
C = C Hargmax

N

Q¢ x (K1) x VP,
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k-means Mask Transformer

A simple change for k-means cross-attention:

updated

cluster centers

t
T

feed-forward network
5

»t

multi-head self-attention
}
&

k-means cross-attention
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cluster centers pixel features
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uster centers pixel features
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k-means Mask Transformer

A simple change for k-means cross-attention:

ResNet-50 MaX-S
pixel-cluster interaction module params FLOPs PQ |params FLOPs PQ
cross-attention [39] 56M 166G 47.5| 73M 237G 52.0
dual-path cross-attention [92] 58M 175G 48.0| 75M 247G 52.3
k-means cross-attention 5TM 168G 52.7| T74M 240G 56.1
dual-path k-means cross-attention| 59M 176G 53.0| 76M 248G 56.2
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k-means Mask Transformer

A simple change for k-means cross-attention:

ResNet-50 MaX-S
pixel-cluster interaction module params FLOPs PQ |params FLOPs PQ
cross-attention [39] 56M 165G 47.5| 73M 237G 52.0
dual-path cross-attention [92] 58M 175G 48.0| 75M = 247G 52.3
k-means cross-attention 5TM 168G 52.7| 74M 240G 56.1
dual-path k-means cross-attention| 59M 176G 53.0| 76M 248G 56.2

5.2% (47.5% -> 52.7%) PQ improvement with one change and negelectable extra cost
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k-means Mask Transformer
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k-means Mask Transformer

Method params FLOPs FPS PQ
MaX-DeepLab 451M 3692G - 51.1% (-6.9%)
MaskFormer 212M 792G 52 52.7% (-5.3%)
K-Net - - - 54.6% (-3.4%)
CMT-DeeplLab 270M 1114G 3.2 55.3% (-2.7%)
kMaX-DeepLab 232M 749G 6.6 58.0%

COCO valset
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https://arxiv.org/abs/2012.00759
https://arxiv.org/abs/2107.06278
https://arxiv.org/abs/2106.14855
https://openaccess.thecvf.com/content/CVPR2022/papers/Yu_CMT-DeepLab_Clustering_Mask_Transformers_for_Panoptic_Segmentation_CVPR_2022_paper.pdf

k-means Mask Transformer

Method params FLOPs FPS PQ APmask mioU
Panoptic-Deeplab 47TM 548G 5.7 63.0% (-5.4%) 35.3% (-8.7%) 80.5% (-3.0%)
Axial-Deeplab 173M 2447G - 64.4% (-4.0%) 36.7% (- 7.3%) 80.6% (-2.9%)
SWideRNet 536M 10365G 1.0 66.4% (-2.0%) 40.1% (-3.9%) 82.2% (-1.3%)

kMaX-DeeplLab 232M 1673G 3.1 68.4% 44.0% 83.5%

Cityscapes va/set
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https://arxiv.org/abs/1911.10194
https://arxiv.org/abs/2003.07853
https://arxiv.org/abs/2011.11675

k-means Mask Transformer

image 1% clusterassignment 2" clusterassignment 3" cluster assignment
4™ cluster assignment 5t cluster assignment 6™ cluster assignment panoptic prediction panoptic label
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k-means Mask Transformer

image 1t cluster assignment 2"d cluster assignment 3™ cluster assignment

5t cluster assignment

4t cluster assignment

6" cluster assignment panoptic prediction panoptic label
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k-means Mask Transformer

image ' 1t cluster assignment 2"d cluster assignment 3rd cluster assignment

4™ cluster assignment I cluster assignment

6t cluster assignment panoptic prediction

panoptic label
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Summary

> Discuss the unlerlying similarity between cross-attention and k-means clustering
algorithm.

> Propose k-means cross-attention, which designs cross-attention as a k-means
clustering module, leading to better object-centric representation.

> A simple change on activation function with SOTA performance.



