Generative Computer Vision: Robust Generalization with Analysis-by-Synthesis

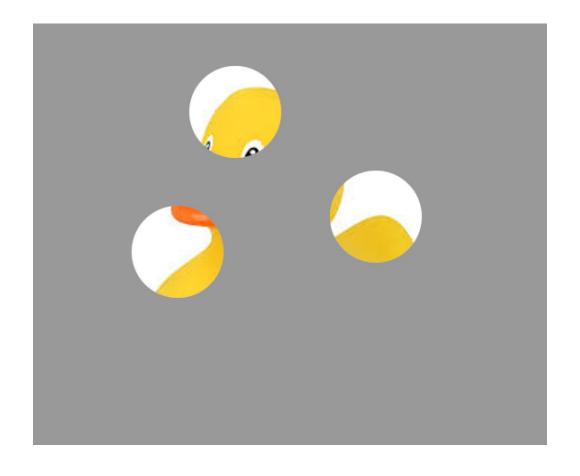
Adam Kortylewski

Generative Vision Research Group
University of Freiburg | Max Planck Institute for Informatics

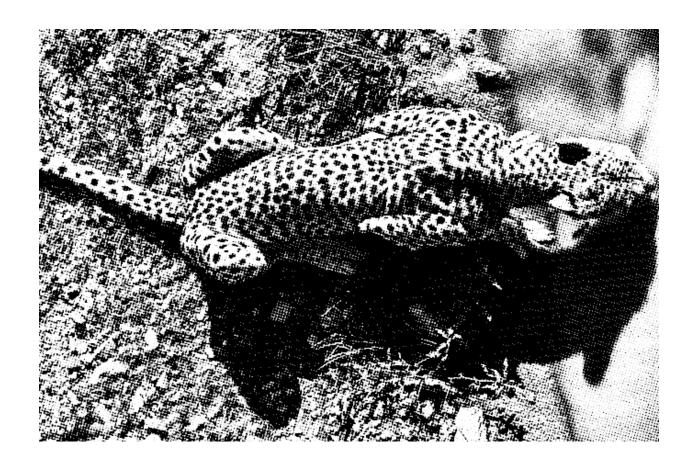
universität freiburg

Robust Vision – What object is this?

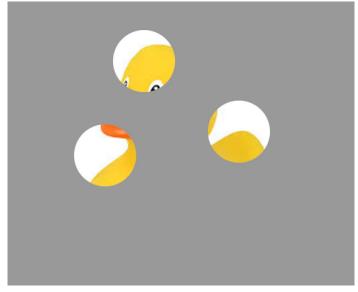
Robust Vision – What object is this?

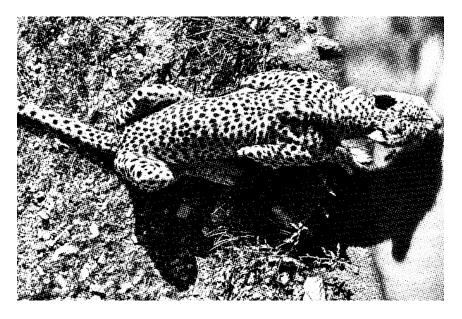


Robust Vision – What object is this?



Robust Vision – Generalization beyond the training data





- Human vision is robust in <u>unseen</u> viewing conditions
- Important side note: Once you recognize the object, you know pose, parts, shape, ...

We love Deep Networks in Computer Vision

Image Classification

>90% Top-1

Semantic Segmentation

>90% mloU

Panoptic Segmentation

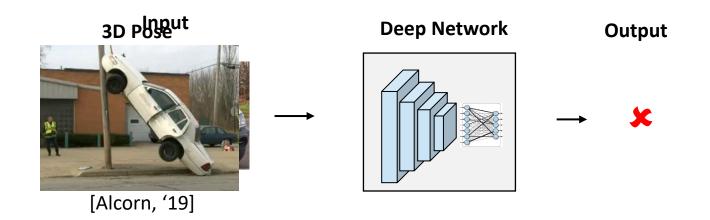
Human Pose Estimation

<7.5cm MPJPE

Visual Question Answering

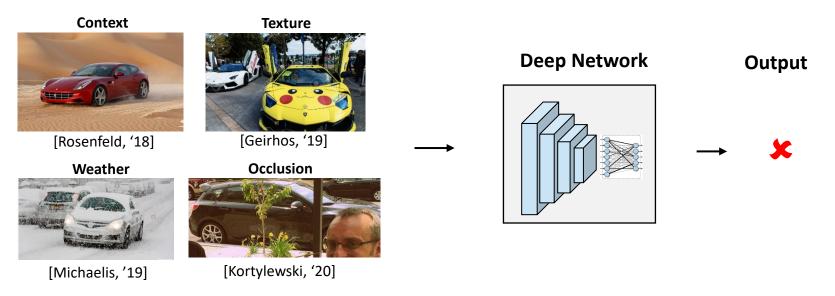
Q: What is the material used to make the vessels in this picture?

But, Deep Nets also have fundamental limitations



- ✓ Large-scale visual recognition
- Lack robustness to 3D changes [Qiu'16,Alcorn'19]
- Lack robustness to changes of image components [Rosenfeld'18, Geirhos'19, Michaelis'19, Kortylewski'20]

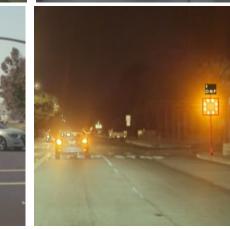
But, Deep Nets also have fundamental limitations



- ✓ Large-scale visual recognition
- Lack robustness to 3D changes [Qiu'16,Alcorn'19]
- Lack robustness to changes of image components [Rosenfeld'18, Geirhos'19, Michaelis'19, Kortylewski'20]

Why is this relevant?

Open Challenges in Self-driving - Detecting STOP Signs



Large variability in:

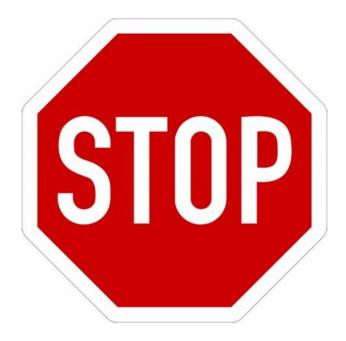
- Context
- Positions and pose
- Lights
- Occlusion
- Environmental conditions

Detecting STOP signs is **not solved** yet!

The Dawn Project Super Bowl Commercial https://youtu.be/_ZiSZbWIrzA

Andrej Karpathy - AI for Full-Self Driving at Tesla, 2020 https://youtu.be/hx7BXih7zx8

STOP signs are explicitly designed to be detectable



Deep Networks do not generalize in out-of-distribution scenarios.

So: What do we need to do?

Is all we need just to collect more data?

Images are combinatorially complex.

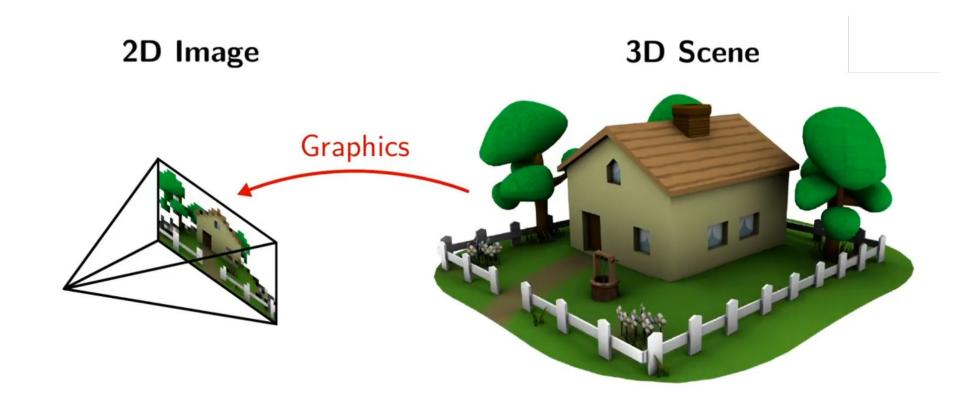
So: What do we need to do?

- 1) Generative computer vision via analysis-by-synthesis
- 2) Advanced benchmarks that measure out-of-distribution robustness

So: What do we need to do?

- 1) Generative computer vision via analysis-by-synthesis
- 2) Advanced benchmarks that measure out-of-distribution robustness

Computer Vision via Analysis-by-Synthesis

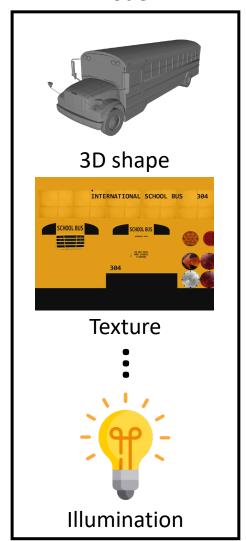


Vision systems that analyze images by synthesizing them.

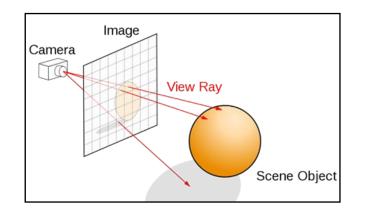
universität freiburg

Analysis-by-Synthesis (1) - Generative Object Model

Computer Graphics Model



Render

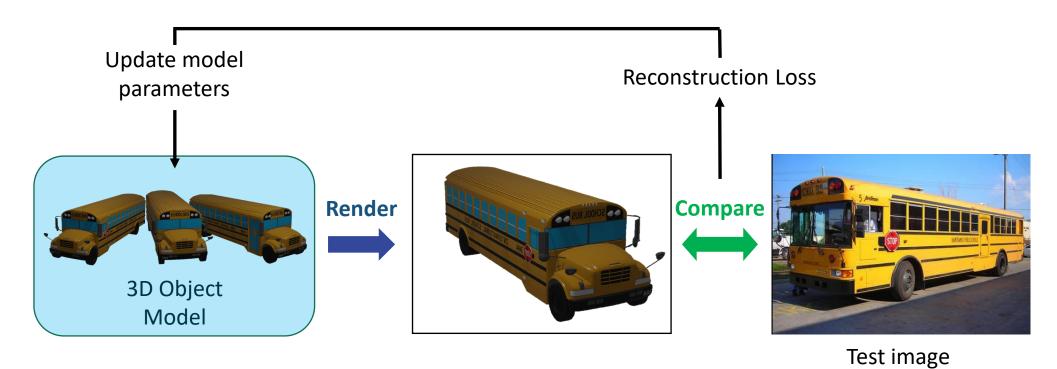


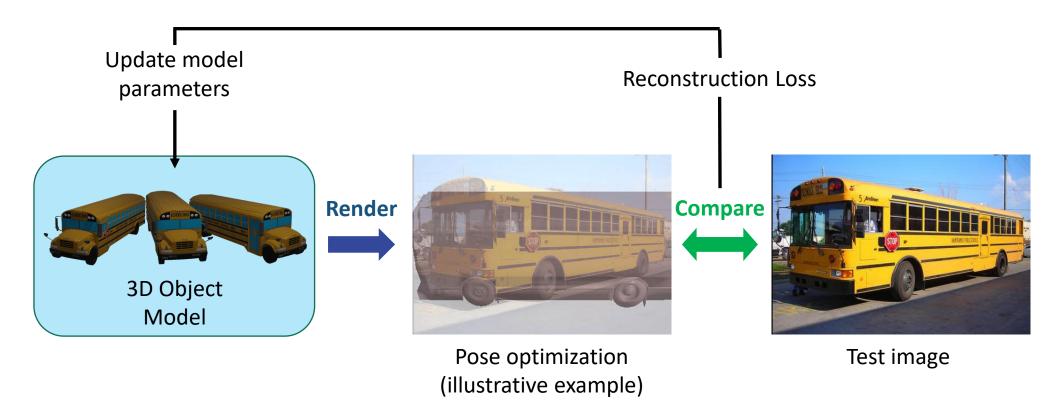
Changing parameter:

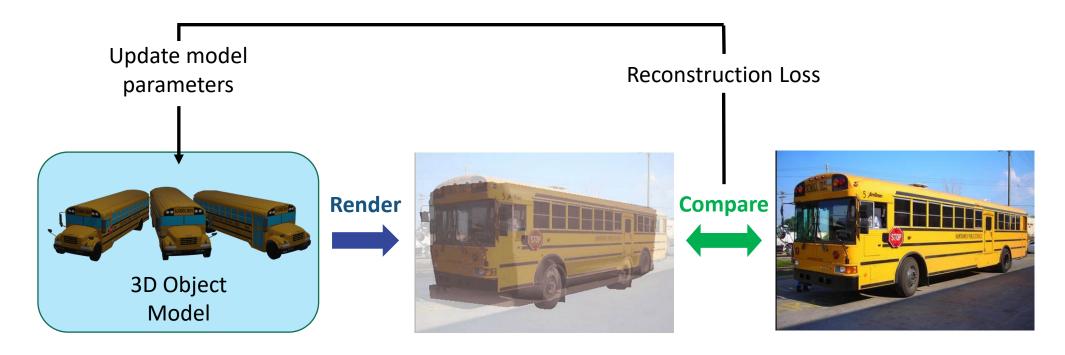
Texture

3D Pose

Illumination

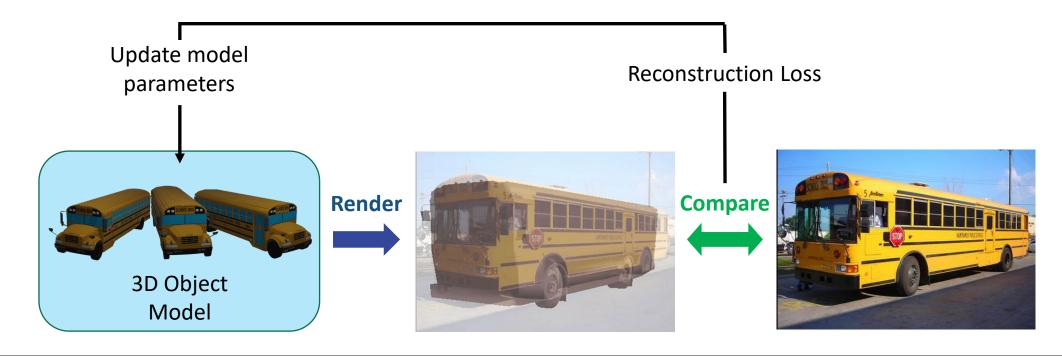






Advantages over deep networks:

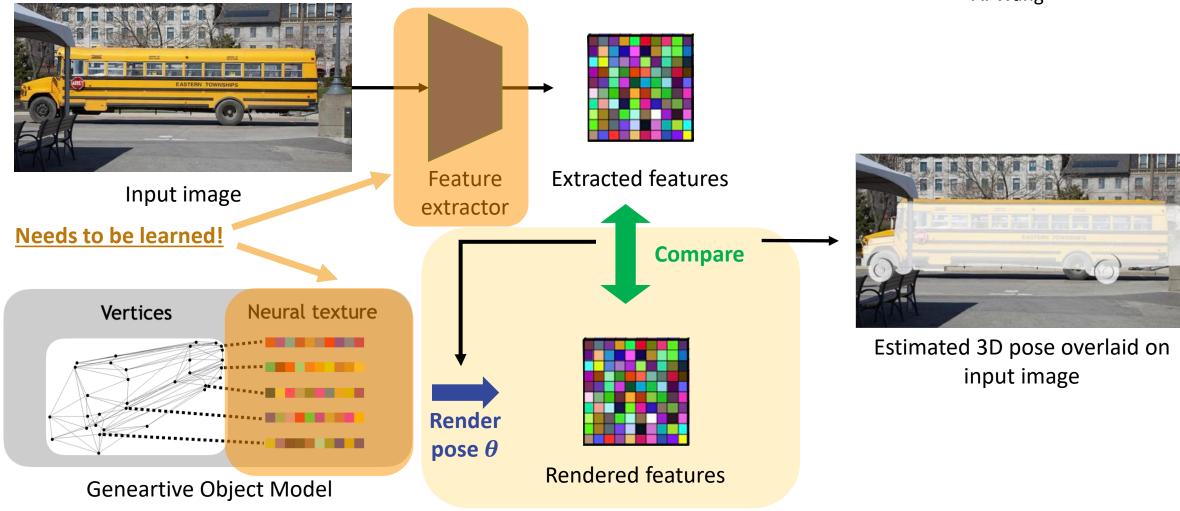
- **✓ 3D-aware** and compositional
- ✓ Robust (occlusion and unseen poses) [Paysan,'09] [Egger,'18] [Wang,'21]
- ✓ Multi-tasking



Why is analysis-by-synthesis not widely used in computer vision?

- 1) Hard to learn the generative object model.
- 2) Hard to optimize the inverse rendering process.

A. Wang



A probabilistic generative model of neural features

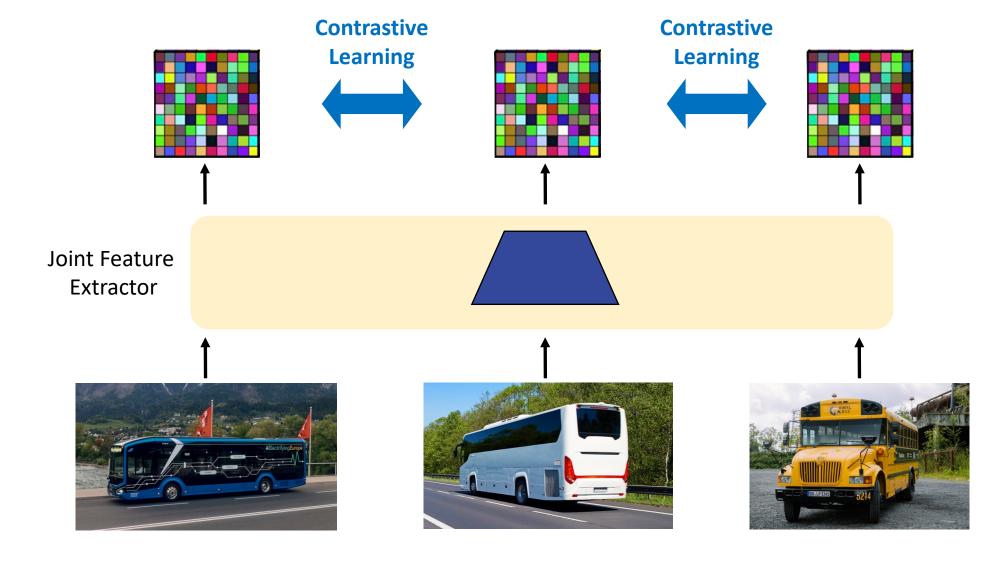
- An object category is represented as $O_y = \{M_y, T_y\}$
 - Mesh $M_y = \{v_n \in \mathbb{R}^3\}_{n=1}^N$
 - Neural Texture $T_y = \{t_n \in \mathbb{R}^c\}_{n=1}^N$
- We formulate a probabilistic generative model

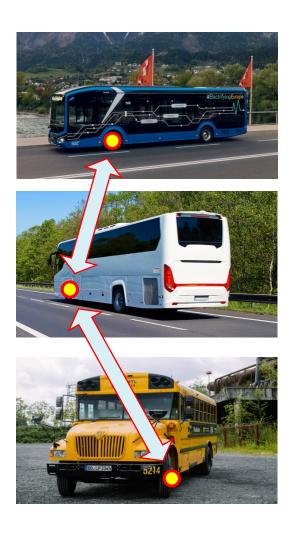
$$p(F|y) = p(F|O_y, \alpha_y, B) = \prod_{i \in \mathcal{FG}} p(f_i|O_y, \alpha) \prod_{i' \in \mathcal{BG}} p(f'_i|B)$$

Assuming Gaussian likelihoods:

$$\mathcal{L}_{Rec}(F, O_y, \alpha_y, B) = -\log p(F|y)$$

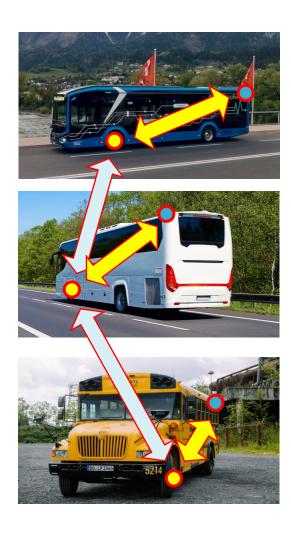
$$= \sum_{i \in \mathcal{FG}} ||f_i - t_{y,n}||^2 + \sum_{i' \in \mathcal{BG}} ||f_i' - B||^2 + const.$$





Contrastive learning of the feature extractor:

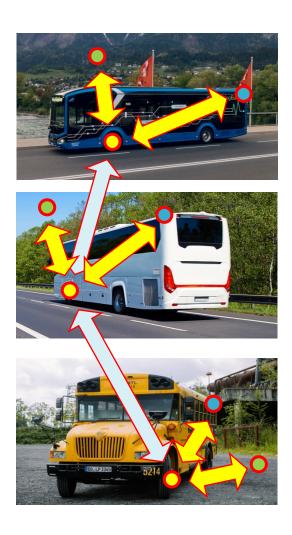
1) Features of the **same point** should be **similar**.



Contrastive learning of the feature extractor:

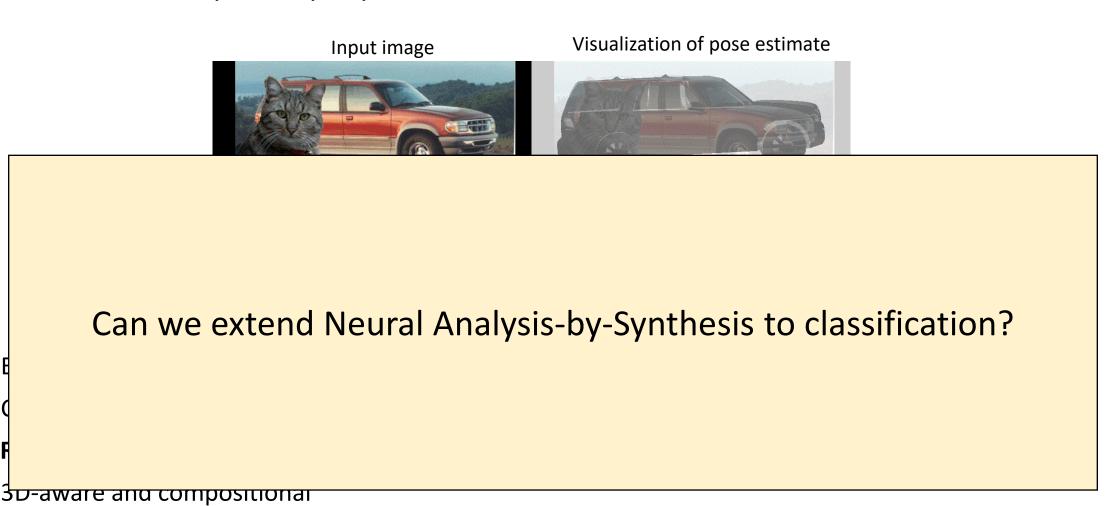
- Features of the **same point** should be **similar**.
- Features of **different points** should be **dissimilar**.

universität freiburg



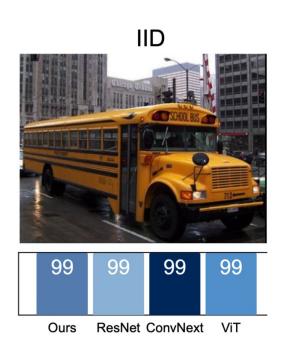
Contrastive learning of the feature extractor:

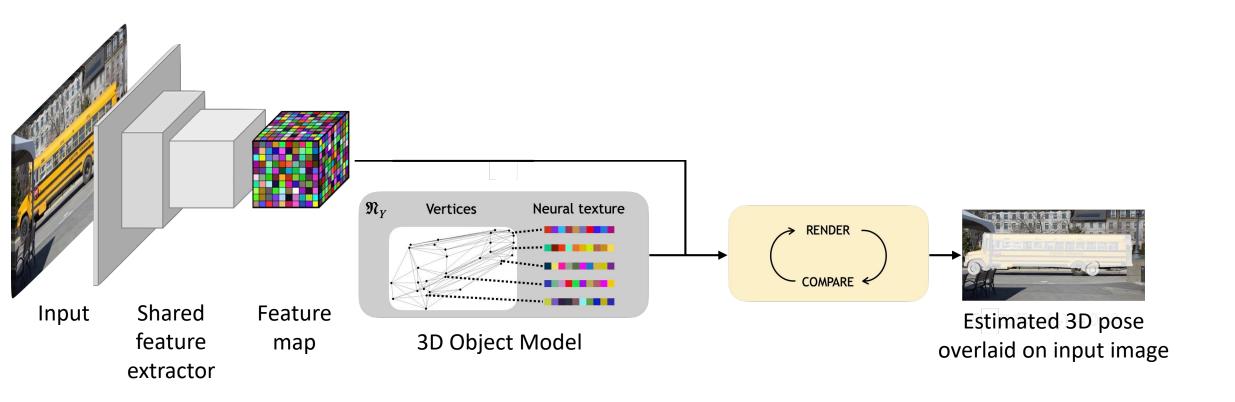
- 1) Features of the **same point** should be **similar**.
- 2) Features of different points should be dissimilar.
- Features on the object should be different from background.

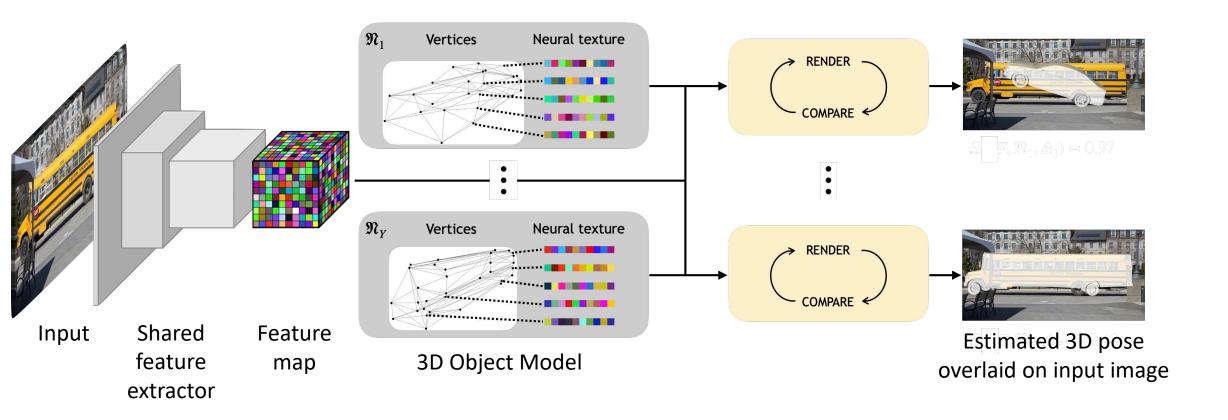


A. Jesslen

G. Zhang







Need to be trained in a discriminative manner. \mathfrak{N}_1 Neural texture Ver ices RENDER **Estimated** \mathfrak{N}_{V} **Vertices** Neural texture **RENDER** class COMPARE • Shared Input Feature Estimated 3D pose feature 3D Object Model map overlaid on input image extractor

Experiments – Testing Out-of-Distribution Robustness

 CV systems are typically evaluated using average performance on independent and identical distributed (i.i.d.) data

Do we really care about average performance on i.i.d. data?

[Zhao et al. 2022]

95%

Experiments – Testing Out-of-Distribution Robustness

B. Zhao

Training Data

Out-of-Distribution Test Data

[Zhao et al. ECCV'2022]

Experiments – Results in OOD scenarios

Image classification

Dataset	P3D+	occluded-P3D+			OOD-CV						
Nuisance		L1	L2	L3	Mean	Context	Pose	Shape	Texture	Weather	Mean
Resnet50	99.3	93.8	77.8	45.2	79.6	45.1	61.2	55.2	48.3	47.3	51.4

Side note: Our model is trained without data augmentation

Experiments – Results in OOD scenarios

Even competitive at pose Estimation

Dataset	P3D+	occluded- P3D+	corrupted- P3D+	OOD-CV
Resnet50	39.0	15.8	15.8	18.0
Swin-T	46.2	16.6	15.6	19.8
Convnext	38.9	14.1	24.1	19.9
ViT-b-16	38.0	15.0	21.3	21.5
NeMo	62.9	30.1	43.4	21.9
Ours	65.1	28.8	43.9	25.5

What do we need to doto achieve robust generalization?

- 1) Generative computer vision via analysis-by-synthesis
- 2) Advanced benchmarks that measure out-of-distribution robustness

Why do benchmarks not reflect real-world performance?

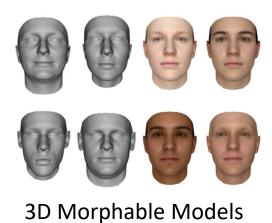
We need to evaluate performance in unseen situations

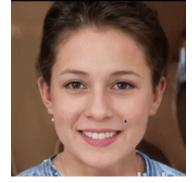
Can we automate the OOD data generation process?

[Zhao et al. ECCV'22]

Collecting and annotating adversarial data is difficult

Lots of progress in generative models





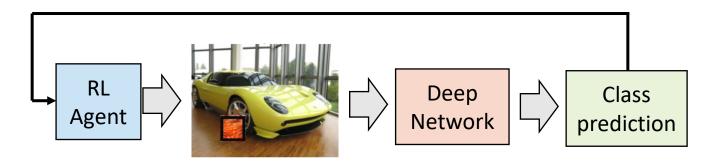
2D GANs

Nerf + 2D Gan

Can generative models help us benchmark CV?

Generative Adversarial Testing of Classifiers

Find occluders that harm the image classification model

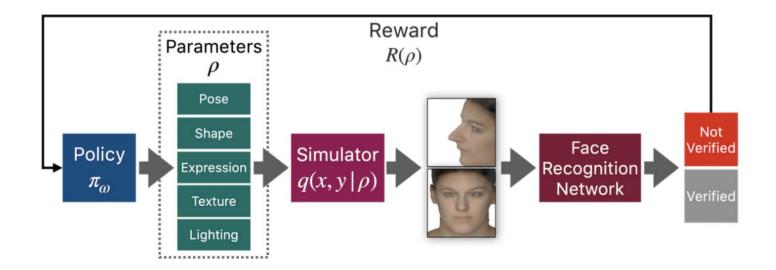


>99% success rate

[Yang et al. ECCV'20]

Generative Adversarial Testing of Face Recognition Models

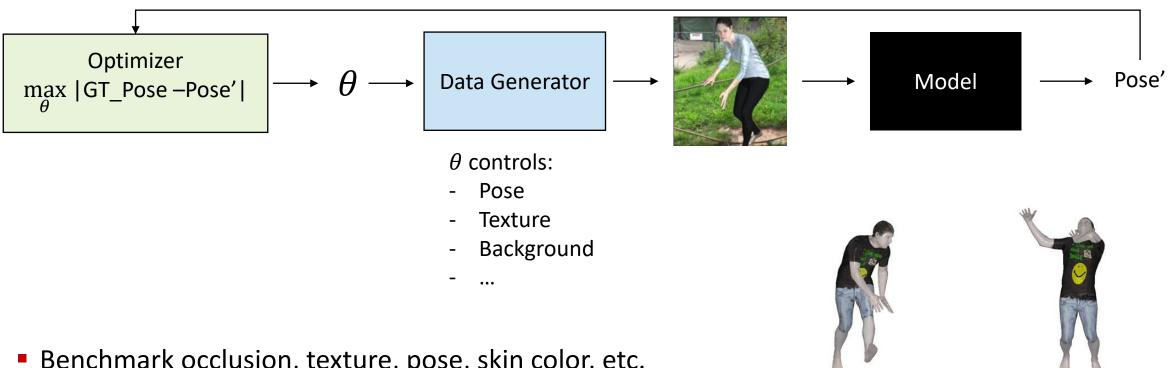
Use 3DMMs to search for faces that are not recognized correctly



Discover weaknesses to unusual poses, biases in skin color, exaggerated facial features

[Ruiz et al. CVPR'22]

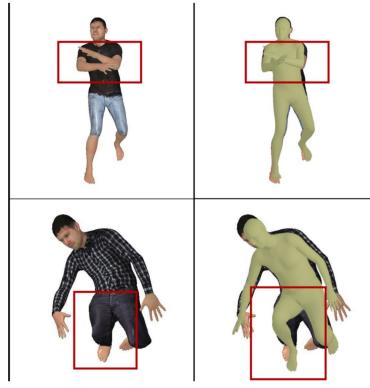
Generative Adversarial Testing of Human Pose Estimation



- Benchmark occlusion, texture, pose, skin color, etc.
- Discover connected regions in parameter space with large pose error
- Use these to improve pose prediction models → new SOTA

Generative Adversarial Testing of Human Pose Estimation

Failure Modes generalize well to real images.



(b) Failure modes found by PoseExaminer

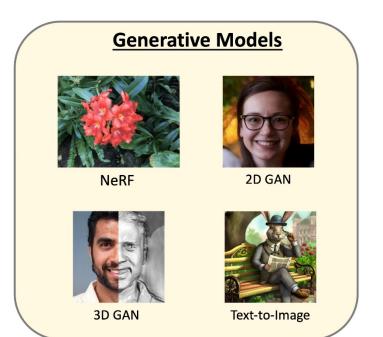
universität freiburg

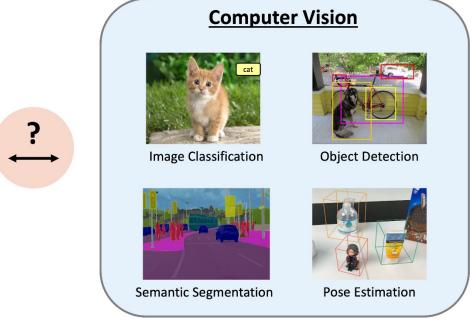
Conclusion

- Deep Networks do not generalize robustly
 - More data is not enough to solve robustness
- We need more challenging datasets that "stress test" computer vision models
 - Generative models as parametric datasets that can be searched adversarially
- We need generative models to improve computer vision
 - Deep networks + 3D generative models → Robust Generalization
 - Deep networks VS 3D generative models → Generative Adversarial Testing

Generative Models for Computer Vision

CVPR 2023, June 18th





UC Berkeley

43