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The need for OOD Testing of Al algorithms

* We typically test Al performance on IID data which comes from the
same source as the training data.

* But it is more interesting, and insightful, to test algorithms on Out-
of-Distribution (OOD) data which comes from a different source
than the training data.

* This ensures that the algorithms have deeper understanding of the
data and are more likely to perform well in real world situations.

* Algorithms which perform well on IID data are like intelligent
parrots. Feedforward deep networks are parrots, admittedly very
intelligent in some cases.



An Old Idea. Analysis by Synthesis

* Analysis by Synthesis (Ulf Grenander) proposes that to “solve” vision
requires inverting the image formation process.

* We should study synthesis -- how images are generated- in order to
perform analysis and determine what visual scene is most likely to
have generated the images.

* This can be formulated as Bayesian inference using a likelihood P(I| W)
and a prior P(W).

* A modern version of this theory is inverse computer graphics.

* This relates to classic theories of visual perception by Helmholtz and
Gregory.



Bayesian Formulation: P(l[W), P(W)

* Why do we perceive a cube? The likelihood P(I| W) constrains the world
state W and is supplemented by prior world knowledge P(W). (P. Sinha).

* Why do we perceive a woman on a flying carpet? Because we reason
about where the shadow comes from (making a mistake) and make an
interpretation of the 3D world. (A. Yuille and D. Kersten).




Analysis by Synthesis and Human Perception

* Studies of human perception suggest that humans do “approximate and as-
needed analysis by synthesis” (D.Kersten and A Yuille). This may be done by
exploiting the feedforward and feedback pathways in the visual cortex (D.B.

Mumford).

* This is consistent with studies of human cognition (J.B. Tenenbaum et al.)
where the goal of vision is to construct 3D representations of objects and
scenes which can be used for higher level cognition with commonsense
reasoning (social knowledge and intuitive physics). This world knowledge
is learnt during development using multi-modal cues.



Deep Neural Networks vs. Approximate Analysis by Synthesis

Deep neural networks Approximate Analysis by

Feedforward classifier Synthesis
3D generative models

- Render—and-Compare

+-

- Designed for specific visual tasks + Work with multiple visual tasks
- Vulnerable to occlusions and domains + Robust to occlusions and domains
- Only work on a single viewpoint + Generalization to novel viewpoints



Approximate Analysis by Synthesis: Render and Compare

We specify a generative model which renders the neural features conditioned on the 3D

object and its 3D pose. Angtian Wang et al. Wufei Ma et al. These are for objects in the
Pascal 3D+ dataset.

This generative model is factorizable which enables rapid inference. The backbone
is trained so that the neural features are invariant to viewpoint.

Ideal Analysis by Synthesis would use non-factorizable generative models of images.
The likelihood of the features F conditioned on object class ¢ and pose m:
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Contrastive learning of neural features and backbone.
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Inference by Render and Compare: (recent alternatives)
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Robustness of 3D Generative Models: Occlusion and Pose

e 3D Generative models are robust to occlusion because they incorporate an outlier process and exploit
knowledge of the 3D structure of objects. l.e. the intensity/features in the image can be generated by
the object or by some other object (e.g., an occluder). The object models and the outlier process
cooperate and compete to explain the images.

e Note: studies show that humans are much more robust than Deep Nets to occluders and generative
models are much better (e.g., H. Zhu et al. 2019).

e The 3D Generative Models have 3D models of objects which makes it fairly straightforward for them to
generalize to novel poses.



3D Generative Models for classification and 3D pose

occLevel | Clean | L1 | L2 | L3 | |Metnc ACCs 1| ACtx1
Resnetsl-sencral | 99.30 | 0381 1| 7778 | 45.21 occlevell] LO LI L2 L3|L0 LI L2 L3
:"'-.:'_‘:'hi-l.'l- 8504 | 7251 | 4931 | 2277 ResS() 824 656 45.1 214|388 247 145 5.1 = T
= = NeMo 824 62.1 39.1 13.3|60.1 389 21.1 5.2
Owrs Q.79 | 9581 | 85.63 | 5791 L
= = = Ours  |85.1 729 531 299|604 41.5 248 10.5| L1: 20-40%
Table 1. P3D+ Classification Result . - Y
: . Table 3. P3D+ 3D-Classification L2: 40-60%

L3: 60-80%

o« Normal classification: 3D generative models achieve similar
results to deep neural networks

e Occlusion classification: 3D generative models perform much
better than deep neural networks

Reference
[1] Zhang, Guofeng, et al. “Inverse Rendering of Discriminative Neural Textures of 3D-aware Image Classification.” In review 2023.



Generalization to Out-of-Distribution (OOD) Data

e Generalization to out-of-distribution (OOD) data is a challenge for current deep network algorithms.
There are image benchmarks for evaluating this generalization. We developed OOD-CV (Binchen Zhao
ECCV 2022).

e 3D Generative Models performed well on OOD-CV for object classification compared to SOTA
alternatives.

e 3D Generative Models also perform well on Synthetic Data (for similar reasons).



Testing on IID data vs. OOD data:
standard deep networks have a big drop in performance
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Reference
[1] Zhao, Bingchen, et al. "OOD-CV: A Benchmark for Robustness to Individual Nuisances in Real-World Out-of-Distribution Shifts." ICML 2022 Shift Happens Workshop. 2022.



Background: deep networks work well on IID data

Ours ResNet ConvNext VIiT

Results show object classification accuracy obtained on the OOD-CV dataset [1].

Reference
[1] Zhao, Bingchen, et al. "OOD-CV: A Benchmark for Robustness to Individual Nuisances in Real-World Out-of-Distribution Shifts." ICML 2022 Shift Happens Workshop. 2022.



Deep networks don’t work well on OOD data

Ours ResNet ConvNext VIT Ours ResNet ConvNext ViT

Results show object classification accuracy obtained on the OOD-CV dataset [1].

Reference
[1] Zhao, Bingchen, et al. "OOD-CV: A Benchmark for Robustness to Individual Nuisances in Real-World Out-of-Distribution Shifts." ICML 2022 Shift Happens Workshop. 2022.



Why deep networks don’t work well on OOD data?

Reason: traditional deep networks do not use the 3D structure of objects
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3D Generative models perform better deep networks
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3D Generative models exploit the 3D structure of the object
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Classification results:
3D Generative Models have SOTA performance on
OOD and occluded data

Dataset | P3D+ occluded-P3D+ OOD-CV
Nuisance | LO | L1 L2 L3 Mean |Context Pose Shape Texture Weather Mean

Resnet50 | 99.3 (93.8 77.8 45.2 79.6 | 451 61.2 552 483 473 514
Swin-T | 994 |93.6 775 46.2 79.7 | 63.0 714 659 614 596 64.2
Convnext | 994 |95.3 81.3 509 81.8 | 53.6 61.2 608 572 47.1  56.0
ViT-b-16 | 99.3 |94.7 80.3 494 809 | 578 673 61.0 54.7 545 59.0
Ours 99.1 [96.1 86.8 59.1 853 | 85.2 88.2 84.6 90.3 824  86.0
Ours++ | 994 [96.8 87.2 59.2 85.7 | 85.1 83.1 84.1 88.5 82.7 854




Classification results:
3D Generative Models have high performance on corrupted data

Dataset |P3D+ corrupted-P3D+

defocus glass motion zoom elastic

Nuisance | LO blur  blur  blur  blur snow frost fog brightness contrast transform.

pixelate jpeg mean

Resnet50 | 99.3 | 67.6 414 735 875 844 84.3 939 98.0 90.0 46.4 82.1 95.5 78.7
Swin-T | 994 | 60.7 371 709 813 835 91.6 954 979 92.1 56.3 79.2 953 78.9
Convnext| 994 | 70.1 58.7 765 90.0 923 929 985 99.2 98.4 67.6 84.2 98.7 85.6
ViT-b-16 | 99.3 | 64.5 78.1 803 88.2 91.2 94.1 90.5  98.7 85.1 84.8 96.9 98.7 87.6
Ours 99.1 | 90.1 669 868 849 813 88.1 982 979 96.8 96.7 96.9 98.1 90.2
Ours++ | 994 | 899 664 873 87.2 833 89.8 984 98.0 96.9 96.5 96.7 98.4 904




Pose estimation results:
3D Generative Models are SOTA on OOD-CV

Dataset P3D+ occluded-P3D+ OOD-CV
Nuisance LO | L1 L2 L3 Mean|Context Pose Shape Texture Weather Mean
Resnet50 | 33.8 1224 158 9.1 158 155 12,6 157 223 23.4 18.0
Swin-T | 29.7 [23.3 156 10.8 166 | 183 144 169 2I1.1 26.3 19.8
Convnext | 38.9 |22.8 12.8 6.6 14.1 18.1 145 165 21.7 26.6 19.9
ACC= T ViT-b-16 | 38.0 |23.9 13.7 74 150 | 247 138 156 25.0 283 21.5
NeMo 62.9 145.0 30.7 146 30.1 | 219 69 195 340 304 219
Ours 61.6 1428 27.0 11.6 272 | 23.6 104 227 375 35.5 255
Ours++ | 65.1 1 45.0 28.7 125 288 | 235 98 223 379 345 248
Resnet50 | 82.2 |66.1 53.1 42.1 538 | 578 345 505 615 60.0 51.8
Swin-T 81.4 |58.5 47.3 38.8 482 | 523 41.1 457 50.1 649  50.9
Convnext| 82.4 |63.7 479 364 493 | 51.7 434 448 48.0 65.9 50.7
ACC= 1T ViT-b-16 | 82.0 |65.4 49.5 37.6 50.8 | 547 340 495 59.1 590 513
NeMo 87.4 | 759 639 45.6 618 | 50.3 353 49.6 575 522  48.0
Ours 86.1 |74.8 59.2 373 57.1 | 543 38.0 535 605 573 519
Ours++ | 89.8 1 78.1 62.6 39.0 599 | 554 36.7 53.1 60.0 570 514

Table S3: Pose Estimation results on (occluded)-PASCAL3D+, and OOD-CV dataset. Pose accuracy is evaluated for error
under two thresholds: & and {5 separately. Noticeably, RCNet has equivalent performances to current SOTA for 3D-pose
estimation event hough it has not been specifically designed for this task.



Qualitative results on Occluded PASCAL3D+ and OOD-CV

e

(a) L2 Occluded, Car (b) Context OOD, Bicycle (c) Weather OOD, Aeroplane
LIRS

(d) Texture OOD, Sofa (e) Shape OOD, Bus (f) Pose OOD, Motorbike

3D Generative Models are robust to occluded data and OOD data



Qualitative results of on Corrupted PASCAL3D+

(g2) Zoom Blur Corruption, Boat (h) Motion Blur Corruption, Table

R R

() Snow Corruption, Chair (k) Brightness Corruption, Bottle (1) Fog Corruption, Bus

Generative 3D models are robust to corrupted data



Conclusion

It is important to test Al on OOD data. Algorithms that perform well on [ID
data can degrade badly on OOD.

Approximate Analysis by Synthesis is an old idea which has a lot of
potential for computer vision and has been proposed as a theory for human
visual perception.

3D generative models and occluder processes enables robustness to
occluded data.

They can also generalize to out-of-distribution (OOD) data needing minimal
modification.

This is only the starting point. 3D generative models work only on a limited
number of objects. There are many technical ways to improve them.

Work with A. Kortylewski, A. Jesslen, A. Wang, W. Ma, G. Zhang and many
others.



	Approximate Analysis by Synthesis �and Robustness to �Out of Distribution Data
	The need for OOD Testing of AI algorithms
	An Old Idea: Analysis by Synthesis
	Bayesian Formulation: P(I|W), P(W)
	Analysis by Synthesis and Human Perception
	Slide Number 6
	Approximate Analysis by Synthesis: Render and Compare
	Contrastive learning of neural features and backbone.
	Inference by Render and Compare:  (recent alternatives)
	Robustness of 3D Generative Models: Occlusion and Pose�
	Slide Number 11
	Generalization to Out-of-Distribution (OOD) Data�
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24

