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Discriminate Methods versus Generative Modeling

▶ For the last ten years most of computer vision research has been driven by
discriminative methods (like Deep Networks). This has lead to huge
improvements as evaluated by standard performance measures on large
annotated datasets.

▶ But there are clear limits to the current approaches. When Deep Networks
were introduced performance improved by 10AP for some visual tasks.
But now improvements are much smaller (despite orders of magnitude
more researchers and computer power).
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Discriminate Methods versus Generative Modeling

▶ Fundamental Problem. The datasets are not nearly big enough. Too few
visual tasks are being addressed (because of the need for annotation).
Much tougher testing is required (e.g., out-of-distribution testing). The
computer vision community is stuck in a local minimum.

▶ High Tech companies are aware of this problem. They have gigantic
datasets (much bigger than the academic community) so they know that
current methods are good, but not good enough, to deal with the
complexity of the real world. ”Existing methods do not work on big
datasets because there are too many corner cases” (Anonymous CEO).
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Discriminate Learning: The setup used by Deep Nets

▶ We first describe the standard procedures for learning a classifier assuming
balanced annotated datasets.

▶ The standard procedure assumes there is an unknown distribution P(x , y)
which generates both the training and the testing data. Our task is to find
a classifier y = f (x : θ) from the training data and with a loss function
L(y , f (x , θ)).

▶ We assume training samples XTrain = {(xi , yi ) : i = 1, . . . ,N} and testing
samples XTest{(xa, ya) : a = 1, . . . ,M}. Both are random samples from
P(x , y) so it assumed that XTrain and XTest are similar.
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Discriminate Learning: The setup used by Deep Nets

▶ The classifier is learnt from the training set to determine
θ̂ = argminθ

∑
(x,y)∈XTrain

L(y , f (x,θ)). The classifer is tested on the test

set
∑

(x,y)∈XTest
L(y , f (x,θ̂)).

▶ If there is sufficient training data, in terms of the complexity of the
classifiers, then good performance on the training set will imply good
performance on the testing set (must check to avoid overfitting).

▶ This is a discriminative approach because it learns a classifier y = f (x : θ).
If the loss function is the cross entropy loss, then it tries to learn the
distribution P(y |x). This standard approach can fail badly if we perform
out-of-distribution testing, i.e. if the test data is not generated from
P(x , y).
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Why do People use the Discriminative Approach?

▶ Why do people use the discriminative approach?

▶ Two main reasons:

▶ (I) We know how to do discriminative learning. There is a long history of
successful discriminative methods with Deep Nets being the most recent
(and most effective). These methods are very successful for certain types
of visual tasks (given data, GPUs, etc). They are essentially regression
methods (using Statistics terminology, where regression includes
continuous and discrete variables).

▶ (II) The current gold standard for evaluating computer vision (and other
machine learning algorithms) is based on finite-sized balanced annotated
datasets, like ImageNet and Coco. Papers are grant proposals are
accepted based on algorithms performance on these types of datasets.
Dsicriminative/regression methods are well suited to this type of task.
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Why do People use the Discriminative Approach?

▶ There is an alternative approach – Generative/Bayesian – which
formulates vision as analysis by synthesis. Synthesis means that the
generative models are trained to generate images from the underlying
visual scene. Analysis means that we interpret images by finding the visual
scene which is most likely to generate the observed images. (A modern
formulation is inverse computer graphics).

▶ But analysis by synthesis is much harder to do than discriminative models.
There are good algorithms for generating images (Computer Graphics and
Style-GANs), which are promising but not yet good enough. But, even
more challengingly, we need algorithms which can invert the generative
process to analyze the images.

▶ This talk will describe the advantages of the Generative/Bayesian approach
compared to Discriminative methods. This will use approximate generative
models. It can be thought of as approximate analysis by synthesis.
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What are the limitations of the discriminative approach? (I)

▶ What are the limitations of the discriminative approach?

▶ The datasets are not big enough. And may never be big enough.

▶ Consider object classification on ImageNet, This is one of the big success
stories of computer vision. On this dataset, computer vision algorithms
seem to outperform human observers. But this is not true if you study
performance closely.
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What are the limitations of the discriminative approach? (I)

▶ The main limitation is that the datasets are not large enough to be
representative of the complexity of the real world. It is easy to show that a
sofa detector trained on ImageNet fails to classify sofa’s which are seen
from viewpoints unrepresented in the training data. There is also context
bias (e.g., in ImageNet the only objects in trees are birds). There are rare
events, also known as corner cases, which are underepresented in the
dataset (both in the training and testing).

▶ This means that XTrain and XTest are biased samples from the real world
distribution P(x , y) so performance results on these datasets mail fail to
generalize to other data that is sampled from P(x⃗ , y).
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What are the limitations of the discriminative approach? (II)

▶ To make this more precise, suppose y ∈ Y (e.g., the set of object classes).
For each object class y , we define Xy to be the set of all images in the real
world that correspond to object class y . By contrast, our image examples
in our training and testing datasets are Xy,Train and Xy,Test. We assume
that the training and testing datasets are balanced, which means that
Xy,Train and XyTest are similar (technically this means that these
distributions are samples from the same distribution, but it may not be the
real world distribution P(x , y).).

▶ One simple type of Dataset bias arises if there is a large subregion
Xybias ∈ Xy which does not overlap with Xy,Train (and hence also from
Xy,Test because the training and test dataset is balanced). In this case,
discriminative methods can give bad results if it is given images from
Xybias . In practice, there are ”missing subregions” for each object
category, i.e. {Xy,bias : y ∈ Y}.
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What are the limitations of the discriminative approach? (II)

▶ This relates to the domain transfer problem. In this case, we have two
different domains X1,Train,X1,Test and X2,Train,X2,Test. But these are
different so that algorithms trained on the first domain may not perform
well on the second domain (and vice versa).

▶ Other biases can occur if the number of training examples |Xy,train| differs
between the object categories. They may be a lots of training data for
some object classes y (i.e. |Xy,train| is large) while for others classes the
amount of training data is much less.
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What are the limitations of the discriminative approach? (III)

▶ To get more intuitive understanding, realize that images are generated
from the underlying three-dimensional world/environment. The image of
an object is a function of different environmental factors: (i) geometric
factors S ,V (the shape of the object and the viewpoint), (ii) the T ,M
texture/material properties of the object, and (iii) the lighting L. (There
are other factors, like occlusion or weather conditions, which we will
discuss later). Formally I = F (S ,V ,T ,M, L).

▶ Dataset biases arise if objects are only seen from a limited range of these
factors. E.g., the object is seen from a limited range of viewpoints, or a
limited range of lighting conditions.
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What are the limitations of the discriminative approach? (III)

▶ In ImageNet, objects are seen with background context. Ground truth for
objects is specified by a bounding box surrounding the object which
includes the foreground (the object) and the background context (the rest
of the bounding box). Discriminative algorithms can exploit the
background context (e.g. blue sky gives evidence that the object is an
airplane or a bird).

▶ But this can lead to dataset biases which an algorithm can unfairly exploit.
A deep net can incorrectly classify a penguin as a human if a TV is
superimposed near the penguin (because a TV is background context that
frequently occurs with humans but almost never with penguins).

▶ Note that these types of environmental factors are not modeled in deep
networks. But they do appear in computer graphics models and some
style-GANs models.
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What are the limitations of the discriminative approach? (IV)

▶ We have illustrated the limitations for the task of object classification. But
the same concerns arise for all visual tasks.

▶ The problems are also apparent for scene classification. Scenes consist of
many objects arranged in backgrounds. The number of possibly ways to
create scenes is combinatorial, which means that datasets which are
representative must be truely gigantic.

▶ The problems are even clearer for action recognition. Studies suggest that
many algorithms are largely relying on background context. E.g., ”boxing”
is classified by detecting the boxing ring, but boxers can box in the street
(or in many locations) and, conversely, people in boxing rings may not be
boxing (they could be playing poker as in the film ”Lock, Stock, and Two
Smoking Barrels”). In such situations, alternative measures like
discriminating between very similar actions is a better performance
measure.
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What are the limitations of the discriminative approach? (IV)

▶ There are also many ways to defeat current deep networks by making
small changes to images, which would not fool a human, but which cause
deep networks to make serious mistakes.

▶ More fundamental limitations of discriminative methods (at least of deep
networks) is that they typically perform only a single task (e.g., object
detection, object classification, etc). By contrast, human can perform an
enormous number of visual tasks (detect/classify objects, identify their
parts and attributes, estimate their geometry and other environmental
factors). Deep Nets do not represent these properties explicitly (if
implicitly, then they are buried inside the features of the deep networks).
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Out-of-Distribution

▶ An out-of-distribution task means that the algorithm is trained on date
from distribution P1(x⃗ , y) but tested on data from distribution P2(x⃗ , y).
There are other related tasks, such as deciding if a test image x⃗ is from
P1(x⃗ , y) or not.

▶ As stated, it is impossible to solve an out-of-distribution task without
making additional assumptions.

▶ The simplest assumption is to find image features f⃗ (x⃗) so that

P1(y |f⃗ (x⃗)) ≈ P2(y |f⃗ (x⃗)) that they are likely to be invariant to details in
the image which are invariant to the task. This has been successfully
applied to some examples of domain adaption. But this is a very
restrictive assumption.



Generative Compositional Models and Discriminative

Generative/Bayesian Perspective

▶ The Generative/Bayesian perspective is very different. It has, in theory,
huge advantages compared to the discriminative approach. But it is harder
and requires knowledge of generative/Bayesian methods which are not
well-known to the computer vision community.

▶ A starting point for the Generative/Bayesian approach is the observation
(a few slides ago) that image of object depend on environmental factors
(shape/viewpoint, texture/material, lighting, etc). There is an external 3D
world, the environment, which generate images which are inputs to AI
vision systems (and the human visual system).

▶ This suggests that vision should be thought of as modeling the
environment. This includes knowing that images consist of compositions
of objects arranged on various background structure (e.g., roads, a grass
lawn, a university lecture hall). Objects can be thought of as compositions
of elementary parts (a horse consists of a head, torso, legs, and tail)
which, in turn, can be expressed in terms of subparts (e.g., head contains
eyes, nose, mouth, etc.). Actions can be thought of as actors (objects)
interacting with each other obeying spatiotemporal relationships).
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Generative/Bayesian Perspective

▶ This perspective suggests that all the variables (environmental factors,
etc.) should be represented explicitly. This has many advantages, it
enables us to build new objects from existing parts (and recognize that a
banana consists of banana slices enveloped in a skin). It also allows us to
perform multiple tasks in a consistent manner (their answers will be given
by these internal representations. (Question: can we design a taxonomy of
out-of-distribution tasks?). (Approximate analysis by synthesis – use
features that are invariant to factors/details which we do not care about).

▶ Note: generalizing to unseen colors/textures/geometries requires the
concepts of 3D models and the factorization of images in terms of
geometry/viewpoint, texture/material, and lighting/illumination.
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Toy Example: Contaminated Data Samples

▶ We start by describing a toy example of out-of-distribution testing and a
Bayesian approach for dealing with it. We assume that some of the testing
data is generated from the training distribution P(x⃗ , y) and the rest is
generated by another distribution Q(x⃗ , y). This can be done by
introducing a latent variable z ∈ {0, 1} for each data sample, where z = 1
if the data is generated by P(x⃗ , y) and z = 0 if it is generated by q(x⃗ , y).

▶ So the test data is generated by Pr((x⃗ , y)|z)P(z) where
Pr((x⃗ , y)|z) = {P(x⃗ , y}z{Q(x⃗ , y)}1−z and P(z = 1) = 1− ϵ
P(z = 0) = ϵ. In other words, the test data is generated from
(1− ϵ)P(x⃗ , y) + ϵQ(x⃗ , y), where Q(x⃗ , y) is another distribution and ϵ is a
constant.
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Toy Example: Contaminated Data Samples

▶ If ϵ is small, then classifiers trained on data from P(x⃗ , y) may still perform
well on data from (1− ϵ)P(x⃗ , y)+ ϵQ(x⃗ , y). But performance will typically
degrade badly if ϵ is large. We can also estimate the latent variable z to
determine if the data is likely to come from P(x⃗ , y) or Q(x⃗ , y).

▶ Note: the discipline of Robust Statistics partially addresses this problem by
showing that some distributions P(x⃗ , y) are robust in the sense that they
are unaffected by small amounts of contamination (small ϵ). Gaussian
distributions, for example, are known to be non-robust.
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Toy Example: Contaminated Data Samples

▶ How to address this problem? One solution is to use Bayesian methods.
Instead of learning the classifiers we learn generative probability
distributions P(x⃗ |y) and P(y) from the training set. We estimate
Q(x⃗ , y) = Q(x⃗ |y)Q(y) using other data (or modelling assumptions).

▶ Suppose the data is generated by Pr((x⃗ , y)|z)P(z). We can estimate z to
determine of the data comes from P(x⃗ , y) or Q(x⃗ , y) (e.g., by comparing
maxy Q(y |x⃗) with maxy P(y |x⃗) using a weighted threshold to allow for ϵ
and model complexity). And then estimate ŷ from P(y |x⃗) or Q(y |x⃗) as
appropriate.
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Toy Example: Contaminated Data Samples

▶ This is the Bayesian/Generative approach. It is conceptually simple but it
requires us to learn probability distributions P(x⃗ , y) and Q(x⃗ , y) for
generating images. But it is very difficult to learn probability distributions
for images because the dimensionality of images is very high. It is much
easier to learn discriminative distributions P(y |x) because these are much
lower-dimensional.

▶ Recently there is hope that we can make generative models of objects, and
perhaps even scenes, using a combination of computer graphics, GANs,
and other techniques.
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Domain Generalization: Edge Detection Example

▶ We now consider domain generalization, which is a variant of
out-of-distribution learning. This is a based on Konishi et al. ”Statistical
Edge Detection”. TPAMI. 2003.

▶ We assume two different edge detection domains (the Sowerby and the
South Florida datasets). These are specified by P1(x⃗ , y⃗) and P2(x⃗ , y⃗).
These distributions are very different (Sowerby and South Florida contain
outdoor and indoor images respectively).
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Domain Generalization: Edge Detection Example

▶ Here x⃗ = {xa : a ∈ D} are image feature vectors (e.g., image derivatives,
which are cues for edges) defined at positions a in the image lattice D and
the variables ya ∈ {0, 1} denote whether there is an edge at a (ya = 1) or
not (ya = 0).

▶ We re-express the distributions as P1(x⃗ , y⃗) = P1(x⃗ |y⃗)P1(y⃗) and
P2(x⃗ , y⃗) = P2(x⃗ |y⃗)P2(y⃗). To simplify we assume that the distributions are
factorizable, i.e. Pi (x⃗ |y⃗) =

∏
a∈D Pi (xa|ya) for i = 1, 2. Similarly for the

distributions P1(y⃗),P2(y⃗).

▶ If we know these distributions, then we can detect edges in the two
domains by thresholding log P1(xa|ya=1)

P1(xa|ya=0)
and log P2(xa|ya=1)

P2(xa|ya=0)
respectively. This

was the first effective statistical/probabilistic edge detector (Konishi et al.
2003) which even outperformed s discriminative method (Martin et al.
2004).
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Domain Generalization: Edge Detection Example

▶ We now consider domain adaptation. We have annotated training data
from the first domain, i.e., we can estimate P1(x⃗ , y),P1(x⃗ |y),P1(y), and
we have unannotated data from the second domain, i.e., we know P2(x⃗).
If the domains are sufficiently different, i.e. P1(y |x⃗) ̸= P2(y |x⃗), then a
classifier trained on the first domain will not perform well on the second
domain. (Edge detectors trained on South Florida perform badly when
tested on Sowerby).

▶ For the second dataset, we assume that the distributions of the feature
vectors are similar at the edges, i.e. P1(xa|ya = 1) = P2(xa|ya = 1). This is
reasonable because at the edges there is typically a big discontinuity in the
image intensity (and can be relaxed). Hence we can use this to estimate
P2(xa|ya = 1). Similarly we assume P1(y⃗) = P2(y⃗).
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Domain Generalization: Edge Detection Example

▶ To estimate P2(xa|ya = 0), we exploit the fact that most pixels in images
are not edges so we can approximate it, without needing annotations, by
P2(xa) = P2(xa|ya = 0)P2(ya = 0) + P2(xa|ya = 0)P2(ya = 1).

▶ In practice, Konishi et al. relaxed the assumption that
P1(xa|ya = 1) = P2(xa|ya = 1), and assumed instead that the magnitude
of the filter responses between the two datasets differed by an unknown
constant scaling factor which could be estimated by making assumptions
about the form of the probability distributions.
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Detecting/Classifying Objects under occlusion

▶ Now consider a model for classifying input x⃗ as an object y if there is
occlusion. We describe a simplified version of CompNeta (A. Kortylewski
et al. CVPR 2020).

▶ The input x⃗ is {xa : a ∈ D} where a labels position within the spatial
domain D. We assume that the training data is generated by a
distribution P(x⃗ , y) and consists of objects which are mostly unoccluded.

▶ A discriminative approach (e.g., standard Deep Net) would learn a
classifier like P(y |x⃗) (plus a threshold). But performance of this classifier
will start degrading if it is tested on objects which are occluded.
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Detecting/Classifying Objects under occlusion

▶ The default discriminative strategy is to create a bigger dataset with
occluded objects, but this is only partly successful. This is arguably
because the number of ways you can occlude an object are combinatorial
so the training dataset may not big enough.

▶ Instead we consider an alternative approach using bayesian/generative
methods. From the training data, drawn from P(x⃗ , y) we learn/estimate.
P(x⃗ |y) and P(y). For simplicity, we assume that the objects are only seen
from a fixed viewpoint. The CompNets were more complicated because
they had other latent variables representing parts(see later).
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Detecting/Classifying Objects under occlusion

▶ For these bayesian/generative models P(x⃗ |y) and P(y), the feature
vectors x⃗ were chosen to be features filters at the top convolutional layer
of a deep network.

▶ This is because convolutional deep network features are invariant to the
details of the objects (lighting, texture, etc.) which are unimportant for
detection/classification (intuitively, this follows from how standard Deep
Nets are trained) This means we can use simple generative/bayesian
models which are easy to learn and to do inference (i.e. detect and classify
objects), enabling us to perform approximate analysis by synthesis.

▶ In particular we assume that the distributions are factorizable, i.e.
P(x⃗ |y) =

∏
a∈D P(xa|y). (But this can be relaxed theoretically. The key

property is that we need to be able to compute the marginal distribution
for a subset of the image pixels {a ∈ D}, which is easy if the model is
factorizable). P(xa|y) is a parameterized distribution (see later for the
form of the distribution).
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Detecting/Classifying Objects under occlusion

▶ To introduce occlusion we assume that some of the components of the
input x⃗ are generated by another distribution Q(x⃗), which we also assume
is factorizable Q(x⃗) =

∏
a∈D Q(xa) (and independent of position).

▶ This distribution Q(x⃗) is learnt separately from P(x⃗ , y). Q(x⃗) can be
learnt by selecting image regions which do not include the objects. (which
requires no annotation).
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Detecting/Classifying Objects under occlusion

▶ We introduce a latent variable z⃗ = {za : a ∈ D}, with za ∈ {0, 1} where
za = 1 means the data at position a is generated by an object and za = 0
means it is generated by an occluder.

▶ The variables z⃗ define two distinct, and complimentary, subregions of D.
D(z⃗) = {a : za = 1} and D̄(z⃗) = {a : za = 0}. Hence D(z⃗)

⋃
D̄(z⃗) = D

and D(z⃗)
⋂

D̄(z⃗) = ϕ.
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Detecting/Classifying Objects under occlusion

▶ Now we construct a distribution for generating data with occlusion. This
is of form Pr(x⃗ |y , z⃗) = P({xa : a ∈ D(z⃗)})Q({xa : a ∈ D̄(z⃗)}) with a
distribution P(z⃗) (the probability of occluded data). Note that the form of
Pr(x⃗ |y , z⃗) requires us to compute the marginals of P(x⃗ |y) and Q(x⃗) (easy
if both distributions are factorizable as they are in the CompNet papers).

▶ The out-of-distribution challenge is how to estimate the object y and the
latent occluder variable z⃗ for data generated by Pr(x⃗ |y , z⃗),P(z⃗), if we
have only trained on data from P(x⃗ , y) and can learn Q(x⃗) independently.



Generative Compositional Models and Discriminative

Detecting/Classifying Objects under occlusion

▶ The Bayesian approach gives a principled way to address this problem.

▶ (I) Learn P(x⃗ |y) from the training data.

▶ (II) Learn Q(x⃗) from other (unannotated data).

▶ (III) Estimate z⃗ and y by maximizing Pr(x⃗ |y , z⃗)P(y) with respect to z⃗
and y . For these types of models computing these quantities is
straightforward (similar to the feedforward pass of a deep net).
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Detecting/Classifying Objects under occlusion

▶ How important is it to learn the distributions P(x⃗ , y) and Q(x⃗) precisely?
This is perhaps best studied empirically because theoretical studies are
hard to do. But there are some underlying concepts.

▶ The first is the notion of robustness (see literature on Robust Statistics).
Distributions are non-robust if small changes to them could dramatically
influence the estimates (the Gaussian is a classic example of a non-robust
distribution). There are also attempts to see under what situations
approximating distributions affects performance (e.g., A. Yuille et al.
”Order parameters: when does high level knowledge help” CVPR 1999).
But these types of theoretical studies are hard to do and their results are
not of great interest to researchers in computer vision.
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Detecting/Classifying Objects under occlusion

▶ The value of the Bayesian/generative formulations is they enable us to
break these problems down into different components, e.g., P(x⃗ , y) and
Q(x⃗), which can be estimated separately.

▶ Perhaps discriminative methods could be adapted to these tasks given
enough ingenuity (and perhaps be fine-tuning with small validation sets).
Alternatively, it might be possible to generate an enormous dataset to
estimate Pr(x⃗ |y , z⃗). But this would probably need to so big that it would
be more efficient to exploit the fact that P(x⃗ , y) and Q(x⃗) can be learnt
independently.

▶ This can, of course, be generalized to much more complicated situations.
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Detecting/Classifying and Segmenting Objects under occlusion

▶ We now want to learn a model which is more complex in three respects:
(I) The model can can perform segmentation, as well as classification and
detection, and can also deal with different viewpoints. (II) The model
contains latent variables which must be estimated during learning. (III)
The model can generalized out-of-distribution to be robust to occluders
and also to localize them.

▶ The model is evaluated both for the tasks of object classification and
amodal completion, which is to detect the object boundaries which are
invisible (because they are occluded). Amodal completion get increasingly
difficult when the amount of occlusion is increased, so it is well suited to
our approach. (Note: humans are good at this task but AI algorithms are
not.) Note that we train the algorithm for one task (classification) but we
also evaluate it for another (amodal completion).



Generative Compositional Models and Discriminative

Detecting/Classifying and Segmenting Objects under occlusion

▶ We learn/train the model on data which is not occluded but where the
only annotation is the class label of the object. This means that the
mixture/viewpoint and the boundary are latent variables which must be
estimated during learning (the EM algorithm will be used).

▶ Then we generalize out-of-distribution to the case where there are
occlusions. The final model will be able to classify the object, detect its
boundaries and in particular its amodal boundaries, and also detect the
occluders.



Generative Compositional Models and Discriminative

Detecting/Classifying and Segmenting Objects under occlusion

▶ We first address the problem of formulating the model and learning it from
training data without occlusions. They we will generalize the model
out-of-distribution so that it will work on objects which are heavily
occluded.

▶ We assume that each training bounding box D contains a foreground
region for the object and a background context region. We define a latent
variable w⃗ = {wa}, where wa = 1 if pixel a is part of the foreground object
and wa = 0 if it is part of the background.

▶ We also define another latent variable c which indicates the center of the
object (we assume that the center of the object is displaced from the
center of D by c).
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Detecting/Classifying and Segmenting Objects under occlusion

▶ We introduce a latent variable m for each object which will (roughly)
correspond to the viewpoint of the object. This is needed because we will
learn a generative model for the feature vectors of the object and this
generative model will depend on the viewpoint. There are also other latent
variables for object parts, but we will not discuss them because of space
limitations.

▶ We slightly change notation so that the feature vectors are given by
F = {fa : a ∈ D}. As before, these are convolutional features at the top
level of a deep net (which are invariant to unimportant details of the
objects).
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Detecting/Classifying and Segmenting Objects under occlusion

▶ The generative model is defined for the foreground and background
context of the object. The background context is the local region
surrounding the object (i.e. the region within the bounding boxe which is
not the object).

▶ Background context can be a useful cue for detecting and classifying
objects (e.g., the background context of an airplane is usually sky) and
standard deep networks exploit it. But context can be missleading
(changing the background context can cause deep nets to make mistakes).
Our approach, where foreground and background are distinguished by a
latent variable makes it possible to use the context when it is helpful and
ignore it when it is not.
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Detecting/Classifying and Segmenting Objects under occlusion

▶ We define the generative model to be a generative model of the feature
vectors F conditioned on the object y , the mixture component m, and the
foreground/background {wa : a ∈ D}:
P(F |y ,m, w⃗) =

∏
a∈D Pa(fa|y ,m)waBa(fa|y ,m)1−wa and

P(w⃗ |y ,m) =
∏

a∈D Pa(wa|y ,m). We can assume that P(m|y)P(y) are
known.

▶ The distributions Pa(fa|y ,m) and Ba(fa|y ,m) are expressed as mixtures of
von Mises Fisher distributions: P(fa|Ay,m

a ,Λ) =
∑

k α
y,m
i,k P(fa|λk) and

B(fa|Ay,m
a ,Λ) =

∑
k ζ

y,m
i,k P(fa|λk), where

p(fa|λk) =
e
σkµ

T
k fa

Z(σk )
, ||fa|| = 1, ||µk || = 1 and Z(σk) is a normalization

constant. The parameters {αy,m
i,k } and {ζy,mi,k } are learnt.
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▶ We can learn the model using the EM algorithm to deal with the latent
variables. This can be done by a combination of differentiation (to
estimate parameters like {αy,m

i,k } and {ζy,mi,k } and clustering algorithms to
estimate the mixture variables, the parameters {λk} of the von Mises
Fisher mixtures and the foregroun/background variables {wa}, and the
distributions P(wa|y ,m).

▶ It can be shown that the mixture variables roughly correspond to different
viewpoints of the objects, the parameters {λk} specify a dictionary of
object parts, the variables {wa} correspond to a foreground/background
segmentation of the object, and the distributions P(wa|y ,m) correspond
to shape masks of the objects for different viewpoints.
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▶ Like all EM algorithms, the success depends on good initialization. E.g.,
to estimate the mixtures we use spectral clustering to group stimuli into
classes with similar appearance.to estimate the foreground/background
variables we can use log-likelihood tests between P(fa|Ay,m

a ,Λ) and
B(fa|Ay,m

a ,Λ) before the P(wa|y ,m) are estimated. WE can also impose a
prior P({wa}) on the foreground/background variables to encourage
neighboring pixels to either be foreground or background.

▶ The learning is formulated as maximum likelihood (or maximum a
posteriori if we use priors). We can also add regularizing terms. We can
also either use deep network features which are pre-trained (e.g., on
ImageNet) or where these features are also trained. Formally the learning
can look like end-to-end deep network training but using a loss function
which differs from standard deep networks. (Calling it end-to-end training
makes reviewers happy!).
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▶ To generalize this model to work out of distribution we add an occlusion
process as for our earlier model. we introduce binary valued occlusion
variables {za} where za ∈ {0, 1} indicates whether pixel a is occluded or
not occluded (za = 0 or 1 respectively).

▶ The occluder distribution Q(F ) =
∏

a∈D Q(fa) where Q(fa) is a mixture of
von Mises Fisher distributions Q(fa) =

∑
k qkp(fa|λk), with

p(fa|λk) =
e
σkµ

T
k fa

Z(σk )
, ||fa|| = 1, ||µk || = 1 and Z(σk) is a normalization

constant. This can be learnt from background data. Note this distributon
differs from the background context distribution (which depends on the
spatial position and learns the typical context of the objects). We also
specify, but do not learn, a prior P(z⃗) =

∏
a∈D P(za) where P(z = 0) is a

rough measure of how much occlusion we want the algorithm to be able to
deal with. We also introduce a displacement variable c (cite Wang).
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▶ This gives a model of form:

P(F |y ,m, w⃗ , z⃗ , c) =
∏
a∈D

Pa−c(fa|y ,m)waza (1)

×Ba−c(fa|y ,m)(1−wa)zaQ(fa)
(1−za).

P(w⃗ |y ,m, c) =
∏
a∈D

Pa−c(wa|y ,m) (2)
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▶ From these distributions we can estimate the object class (and the class
mixture), the center c of the object, the occlusion map {za}, and the
foreground background map {wa}.

▶ For the later two, we also use the priors P(w⃗ |y , c) and P(z⃗). Following
standard Bayesian procedures, we will estimate distributions for all the
quantities and then threshold them if we want to make a decision.

▶ From our estimates of foreground/background and the occluders we can
determine the amodal boundaries by finding the boundaries between the
occluded foreground regions (i.e. wa = 1, za = 0) and the background
context regions (i.e. wa = 1).
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▶ For Amodal completion the shape prior P({wa}|y ,m) is very useful
because it gives prior knowledge of the likely boundary of the object in the
occluded regions (which, of course, requires that the model is able to
classify the object and estimate its mixture component). The visible
boundary of the object can be detected by combining local evidence for the
foreground and backgroun – from P(.) and B(.) – with the shape prior.

▶ The most successful algorithms for Amodal completion require annotations
for the segmentation including the invisible regions. These outperform our
algorithm if the leverl of occlusion is low. But we outperform them if the
occlusion level is high. We outperform all other alternative algorithms. In
addition, we observe that introducing the shape prior improve performance
of the CompNet for classification (compared to CompNets without shape
priors.
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▶ These notes have illustrated how some out-of-distribution tasks can be
formulated in terms of Bayesian/generative probability models. This
enables us to take models which have been trained on data from one
distribution and modify them in a principalled manner so that they work
on data from other distributions. We have concentrated mostly on
generalizing out-of-distribution to deal with occlusion, but we also
discussed domain transfer.

▶ One conclusion is that Bayesian/Generative methods are useful for
formulating out-of-distribution tasks. They can also be used for learning
latent variables (e.f.,foreground/background) which enables us to train the
model for one task but also enable the model to perform other tasks in a
consistent manner. They also yield a strategy to ensure that models are
interpretable, by validating the latent variables against some ground truth
(e.g., we know we have detected a car because we can find wheels at
position xxx, the door at position yyy, and so on).
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▶ Most out-of-distribution tasks can be formulated in this manner. Obvious
examples include recognising objects from novel viewpoints, or under
different lighting, or with different texture/materials. Some of these need
3D models of objects, which might be learnt from Computer Graphics,
style-GANs, compositional models, or some combination. To use these
models requires inverse inference which is challenging. CompNets simplies
this by doing approximate analysis by synthesis where we generate feature
vectors which are invariant to details that are unimportant for the task.
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Conclusion

▶ The Bayesian/Generative approach has many advantages compared to the
discriminative approach.

▶ But its strengths are not apparent on standard performance measures
(balanced annotated datasets).Its strengths become clearer on
out-of-distribution.

▶ It does require more work than discriminative models. We would need to
construct generative models of all objects and scenes.
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