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Analysis by Synthesis

• Formulates vision in a Bayesian perspective.
• Generative Model P(I|W) – model for generating an image I from a state of the 

world W
• Prior Model P(W) –state of the world
• Posterior Model P(W|I).
• Synthesis means that we have models P(I|W) P(W) for generating images.
• Analysis means that we can determine the world state W from P(W|I).
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Testing Vision Models

• Usually vision models are tested by assuming that we have i.i.d. samples from 
some unknown distribution.

• We train on half the data and test on the other half. This yields standard 
performance measures.

• Claim: these are problematic for many reasons.
• Instead – what tougher tests like out-of-distribution, domain transfer, and others.
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Compositional Generative Networks

• Generalization under Partial Occlusion

• A Deep Architecture with Innate Robustness to Partial Occlusion
• A Generative Compositional Model of Neural Features
• Robustness to Occlusion and Occluder Localization

• Robust Object Detection under Occlusion with CompositionalNets
• Disentanglement of Context and Object Representation

• Conclusion
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Motivation – Generalization under occlusion is important
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• In natural images objects are surrounded and partially occluded by other objects

• Occluders are highly variable in terms of shape and texture -> exponential complexity

• Vision systems must generalize in exponentially complex domains



• DCNNs do not generalize when trained with non-occluded data

• What if we train with lots of augmented data?

Motivation – A Fundamental Limitation of Deep Nets
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Overview

• Generalization under Partial Occlusion

• A Deep Architecture with Innate Robustness to Partial Occlusion
• Generative Compositional Model of Neural Features
• Robustness to occlusion and occluder localization

• Robust Object Detection under Occlusion with CompositionalNets
• Disentanglement of Context and Object Representation

• Conclusion
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A Generative Model of Neural Feature Activations
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A Generative Model of Neural Feature Activations
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Y labels object class
P labels position in the image
fp are the feature vectors at p
m label the mixture (viewpoint)
alpha’s,lambda’s,mu’s are parameters
which are learnt.



1. vMF likelihood:

2. Mixture likelihoods:

3. Class score:

Inference as Feed-Forward Neural Network
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Learning the Model Parameters with Backpropagation
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• Image patterns with highest likelihood:

Explainability - vMF Kernels resemble „part detectors“
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Explainability – Mixture components model object pose
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• Images with highest likelihood for mixture components: 



Explainability – Mixture components model object pose
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Explainability – Mixture components model object pose
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Overview

• Generalization under Partial Occlusion

• A Deep Architecture with Innate Robustness to Partial Occlusion
• Generative Compositional Model of Neural Features
• Robustness to occlusion and occluder localization

• Robust Object Detection under Occlusion with CompositionalNets
• Disentanglement of Context and Object Representation

• Conclusion 
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• We introduce an outlier model:

Occlusion modeling
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• We introduce an outlier model:

• A simple model of how the object does not look like:

Occlusion modeling
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Competition between object and outlier model
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Quantitative Evaluation of Occluder Localization
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CompNets can classify partially occluded vehicles robustly
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ImageNet 50 classification under occlusion
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ImageNet 50 classification under occlusion
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Overview

• Generalization under Partial Occlusion

• A Deep Architecture with Innate Robustness to Partial Occlusion
• Generative Compositional Model of Neural Features
• Robustness to occlusion and occluder localization

• Robust Object Detection under Occlusion with CompositionalNets
• Disentanglement of Context and Object Representation

• Conclusion
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DCNNs for object detection also do not generalize well
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Context has too much influence when object is occluded

27



• We introduce a context-aware object model:

• Segment the image during training:

Seperate the representation of context and object
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Context-awareness Improves Localization
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Explainability- Occluder localization in Object detection
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Detection Results
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Conclusion

• Partial occlusion introduces exponential complexity in the data

• The complexity gap can be overcome by introducing prior knowledge about 
compositionality, partial occlusion and context into the neural architecture

• Generalization beyond the training data in terms of partial occlusion & context

• Retain high discriminative performance due to end-to-end training

• Future work: Articulated objects, 3D geometry, top-down reasoning, scale, …
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Four Additional Projects

• 1. Robustness to Patch-Attacks. Deep Nets can fail badly when stress-
tested by Patch-Attacks, but CompNets are robust out of the box. 
(Christian Cosgrove at al. In submission. 2020).

• 2. Multi-task consistency – modal and amodal boundary detection 
without boundary annotations. (Yihong Sun et al. In submission, 
2020).

• 3. Recurrent Reasoning about Multi-Object Occlusion. Bottom-up and 
to-down. (Xiaoding Yuan et al. In submission. 2020).

• 4. NeMo – neural mesh model for robust 3D pose estimation. (Angtian
Wang et al. In submission. 2020).



(1): ROB. Robustness out of the box
• Background – standard computer vision & machine learing practice is to evaluate 

algorithms by average case performance on a finite-sized balanced annotated 
dataset (BAD).

• We argue that it is better to evaluate algorithms by trying to identify their weak 
points by dynamic testing, i.e. modifying the input images adaptively to cause the 
algorithms to fail – Adversarial Examiner. 

• In previous work, Chenglin Yang et al. CVPR. 2020, we developed patch-attacks 
which could fool Deep Nets by adding a few small patches to images. The patches 
are their locations were chosen by a search strategy with feedback from the 
algorithm. Presented to CompCogSci in Spring 2020.

• Dataset: Pascal+PatchAttacks. German-Traffic-Signs+PatchAttacks.
• These blackbox targeted attacks had over 90% success rate on advanced Deep 

Nets. Suggests that Deep Nets lack knowledge of the spatial structures of objects.



(1) ROB Patch Attacks: Overview

• Learn an Attack Policy by reinforcement learning. 

• Chenglin Yang et al. Patch Attack. ECCV. 2020.



(1) ROB: Robustness out of the Box.

• We conjectured that CompNets would do better than Deep Nets 
because they have knowledge of the spatial structure of objects and 
their outlier process may enable them to reject the attacking patches.

• This was correct. Patch-attacks (and related attacks) are less 
successful on CompNets by an order of magnitude. CompNets also 
have some ability to detect and localize the patch attacks.

• This gives more evidence that CompNets are much more robust than 
Deep Nets. Datatset: PASCAL+PatchAttacks.



(1)  ROB CompNets are robust to Patch Attacks.

• CompNets are robust against targeted patch attacks.
• CompNets can localize attacks.

• C. Cosgrove et al. Robustness out of the box. Arxiv. 2020.                                                                                                                      



(1) ROB: Need to modify CompNets for fine detail
• We also tested the robustness of CompNets to patch attacks on the German 

Traffic Sign dataset. 
• Performance was better than alternative methods, particularly for signs which 

differed at the coarse level. But CompNets were less effective for fine scale 
discrimination (e.g., speed limit 60 mph vrs. speed limit 80 mph). We used an 
engineering trick to partially solve this problem in the paper.

• Deeper Understanding. CompNets are generative on features at the upper levels 
of the Deep Net. These features are invariant to low-level details of the image. 
This has a big advantage because modeling these details is hard and they are 
often irrelevant to the task. But this suggests that we need to supplement our 
coarse CompNets with fine-scale CompNets defined at lower-levels and with more 
detailed geometry.

• This is another twist on the idea of bottom-up processing seeks invariant features 
while top-down is needed for higher resolution (David Mumford, Tai Sing Lee).



(1) ROB Summary

• CompNets are much more robust than Deep Nets to patch-attacks 
without needing any modifications.

• Performance degrades for fine-detail tasks (can be fixed by 
engineering tricks in the short term).

• This requires  creating a theory which can model objects at different 
levels of resolution with only coarse geometry needed at the higher 
level and more precise and detailed geometry at the lower-levels. 

• This also motivates  adversarial testing of CompNets, and other 
models, with adversarial examiners which aim to target their weak 
points (IAA grant with APL).



(2): Modal and Amodal Boundaries (MAB)

• CompNets have a natural ability to detect object boundaries without 
any annotated segmentation. They are trained, like Deep Nets, on 
bounding boxes contain foreground objects and background.

• They learn generative models for the bounding boxes but can also 
learn generative models for the background. This enables them to 
make an estimate of the foreground using log-likelihood ratio tests.

• Example from A. Wang et al. 2020.



(2) MAB: Modal and Amodal Boundaries

• The modal boundaries are the ones you can see. The amodal boundaries are 
invisible.

• Example:

• Note: most people who study Admodal boundary detection assume that the 
visible segmentations have been annotated (during training). But we do not, so 
we evaluate CompNets for both Modal and Amodal boundary detection. 



(2) MAB: Augment CompNets by a Prior

• We augment CompNets by learning a prior for the boundary of the 
object, conditioned on the mixture (viewpoint).

• This is done by  an EM formulation. We initialize our estimates of the 
boundaries – both modal and amodal – using the 
foreground/background estimation as discussed before.

• This prior enables us to predict the amodal boundaries and also
improves performance on the modal boundaries.

• We have results on datasets: Kitti-Amodal (we should pay students to 
annotate Coco-amodal with class labels).



(2) MAB: Results

• Priors and Results. Note: PCNet-M requires supervision (ground truth 
object segmentation mask). Ours and BBTP does not. Results on KINS 
dataset (similar results on OccludedVehiclesDetection Dataset).



(2) MAB: Summary

• This shows that CompNets can learn the shape of the object despite not 
being given any annotated segmentation to learn from. This is unlike Deep 
Nets which simply classifies the annotated bounding boxes.

• This is an example of multi-task-consistency. The CompNet will perform 
object classification and modal/amodal boundary estimation using the 
same underlying model (plus some viewpoint/parts).

• This is an example of learning efficiency. The CompNet only requires object 
annotations (for bounding boxes) but performs well on other visual tasks.

• The distinction between foreground and background can be used for other 
problems.



(3) M-O-O: Multi-Object Occlusion 
• CompNets assumed there was a single object in the image which could be 

occluded.
• We must consider the case where there two, or more, objects, with one 

object partly occluding the other. We want to detect/classify both objects, 
segment them, and determine the boundary between them (instance level 
segmentation).

• This relates to the Captcha Task.
• This visual task is hard to do purely bottom-up. We address it by using a 

bottom-up process (CompNet) to make hypotheses for the partial 
segmentations of the objects. Then a top-down process, the Occlusion 
Reasoning Module, finds which interpretations are most consistent with the 
image.

• As before, we only use bounding box annotations for the objects.



(3) M-O-O

• We train and evaluate for detecting and segmenting cars on the KITTI 
dataset. Also a partly synthetic dataset.

• CompNets are augmented with an Occlusion Reasoning Module 
(ORM). This detects erroneous feed-forward predictions and corrects 
them by reasoning about the occlusion order of objects.

• We also can handle unknown occluders, which competing methods 
cannot, and we also extract the occlusion order (i.e. relative depth).



(3) M-O-O Theory

• Our model corrects erroneous instance segmentations by multi-
object reasoning. 



(3) M-O-O More Details

• Detailed model. Resolution of Segmentation conflict.



(3) M-O-O Results

• Visualize. And Tables.



(3) M-O-O Summary

• This project extends CompNets to instance level segmentation on 
partially overlapping objects.

• We demonstrated this on KITTI with state-of-the-art results.
• This model required bottom-up and top-down processing to 

implement the Occlusion Reasoning Module. This is simpler than the 
methods used for CAPTCHA’s (George et al. 2017). We will need to 
extend our model to deal with more challenging conditions.

• This method can be adapted to other types of objects (need to 
annotate Coco with labels first). Maybe it could also help defend 
against advanced patch attacks one object occluded by fractions of 
another object (which obey the correct spatial relationships).
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